| # Copyright (c) OpenMMLab. All rights reserved. | |
| import pytest | |
| import torch | |
| from mmdet.models.layers import ConvUpsample | |
| def test_conv_upsample(num_layers): | |
| num_upsample = num_layers if num_layers > 0 else 0 | |
| num_layers = num_layers if num_layers > 0 else 1 | |
| layer = ConvUpsample( | |
| 10, | |
| 5, | |
| num_layers=num_layers, | |
| num_upsample=num_upsample, | |
| conv_cfg=None, | |
| norm_cfg=None) | |
| size = 5 | |
| x = torch.randn((1, 10, size, size)) | |
| size = size * pow(2, num_upsample) | |
| x = layer(x) | |
| assert x.shape[-2:] == (size, size) | |