Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -3,47 +3,32 @@
|
|
3 |
pipeline_tag: tabular-regression
|
4 |
tags:
|
5 |
- stock-prediction
|
6 |
-
- finance
|
7 |
- deep-learning
|
8 |
-
-
|
9 |
-
-
|
10 |
---
|
11 |
|
12 |
-
# π Stock
|
13 |
|
14 |
-
This model
|
15 |
-
It uses
|
|
|
|
|
16 |
|
17 |
## π How to Use
|
18 |
|
|
|
|
|
19 |
```python
|
20 |
import requests
|
21 |
|
22 |
-
API_URL = "https://api-inference.huggingface.co/models/
|
23 |
-
headers = {"Authorization": "Bearer
|
24 |
|
25 |
data = {
|
26 |
-
|
27 |
}
|
28 |
|
29 |
response = requests.post(API_URL, headers=headers, json=data)
|
30 |
print(response.json())
|
31 |
-
```
|
32 |
-
|
33 |
-
## π₯ Example
|
34 |
-
|
35 |
-
**Input:**
|
36 |
-
```json
|
37 |
-
{"inputs": "RELIANCE.NS"}
|
38 |
-
```
|
39 |
-
|
40 |
-
**Output:**
|
41 |
-
```json
|
42 |
-
{"prediction": 2978.45}
|
43 |
-
```
|
44 |
-
|
45 |
-
## π¨βπ» Author
|
46 |
-
- SelvaprakashV
|
47 |
|
48 |
-
## π License
|
49 |
-
Apache 2.0
|
|
|
3 |
pipeline_tag: tabular-regression
|
4 |
tags:
|
5 |
- stock-prediction
|
|
|
6 |
- deep-learning
|
7 |
+
- finance
|
8 |
+
- stock-market
|
9 |
---
|
10 |
|
11 |
+
# π Stock Prediction Model
|
12 |
|
13 |
+
This is a Deep Learning based **Stock Price Prediction** model, trained to forecast future stock prices based on historical data trends.
|
14 |
+
It uses LSTM (Long Short-Term Memory) networks for time-series analysis.
|
15 |
+
|
16 |
+
---
|
17 |
|
18 |
## π How to Use
|
19 |
|
20 |
+
You can use this model directly with the Hugging Face Inference API:
|
21 |
+
|
22 |
```python
|
23 |
import requests
|
24 |
|
25 |
+
API_URL = "https://api-inference.huggingface.co/models/SelvaprakashV/stock-prediction-model"
|
26 |
+
headers = {"Authorization": f"Bearer YOUR_HUGGINGFACE_API_TOKEN"}
|
27 |
|
28 |
data = {
|
29 |
+
"inputs": "POWERGRID.NS" # Replace with your stock symbol
|
30 |
}
|
31 |
|
32 |
response = requests.post(API_URL, headers=headers, json=data)
|
33 |
print(response.json())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
|
|
|