File size: 29,133 Bytes
ab368ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
---
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:1441500
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
base_model: Shuu12121/CodeModernBERT-Finch
widget:
- text: "public static TaggableReadPreference secondary(final TagSet tagSet,\n   \
    \                                                final long maxStaleness, final\
    \ TimeUnit timeUnit) {\n        return new SecondaryReadPreference(singletonList(tagSet),\
    \ maxStaleness, timeUnit);\n    }"
- text: '// DoTimeout performs the given request and waits for response during

    // the given timeout duration.

    //

    // Request must contain at least non-zero RequestURI with full url (including

    // scheme and host) or non-zero Host header + RequestURI.

    //

    // Client determines the server to be requested in the following order:

    //

    //   - from RequestURI if it contains full url with scheme and host;

    //   - from Host header otherwise.

    //

    // The function doesn''t follow redirects. Use Get* for following redirects.

    //

    // Response is ignored if resp is nil.

    //

    // ErrTimeout is returned if the response wasn''t returned during

    // the given timeout.

    //

    // ErrNoFreeConns is returned if all Client.MaxConnsPerHost connections

    // to the requested host are busy.

    //

    // It is recommended obtaining req and resp via AcquireRequest

    // and AcquireResponse in performance-critical code.

    //

    // Warning: DoTimeout does not terminate the request itself. The request will

    // continue in the background and the response will be discarded.

    // If requests take too long and the connection pool gets filled up please

    // try setting a ReadTimeout.'
- text: "func (c *Compressor) selectEncoder(h http.Header, w io.Writer) (io.Writer,\
    \ string, func()) {\n\theader := h.Get(\"Accept-Encoding\")\n\n\t// Parse the\
    \ names of all accepted algorithms from the header.\n\taccepted := strings.Split(strings.ToLower(header),\
    \ \",\")\n\n\t// Find supported encoder by accepted list by precedence\n\tfor\
    \ _, name := range c.encodingPrecedence {\n\t\tif matchAcceptEncoding(accepted,\
    \ name) {\n\t\t\tif pool, ok := c.pooledEncoders[name]; ok {\n\t\t\t\tencoder\
    \ := pool.Get().(ioResetterWriter)\n\t\t\t\tcleanup := func() {\n\t\t\t\t\tpool.Put(encoder)\n\
    \t\t\t\t}\n\t\t\t\tencoder.Reset(w)\n\t\t\t\treturn encoder, name, cleanup\n\n\
    \t\t\t}\n\t\t\tif fn, ok := c.encoders[name]; ok {\n\t\t\t\treturn fn(w, c.level),\
    \ name, func() {}\n\t\t\t}\n\t\t}\n\n\t}\n\n\t// No encoder found to match the\
    \ accepted encoding\n\treturn nil, \"\", func() {}\n}"
- text: 'Parse the template file and return it as string


    @param array $arrAttributes An optional attributes array


    @return string The template markup'
- text: "function seed_mix() {\n      a ^= b <<  11; d = add(d, a); b = add(b, c);\n\
    \      b ^= c >>>  2; e = add(e, b); c = add(c, d);\n      c ^= d <<   8; f =\
    \ add(f, c); d = add(d, e);\n      d ^= e >>> 16; g = add(g, d); e = add(e, f);\n\
    \      e ^= f <<  10; h = add(h, e); f = add(f, g);\n      f ^= g >>>  4; a =\
    \ add(a, f); g = add(g, h);\n      g ^= h <<   8; b = add(b, g); h = add(h, a);\n\
    \      h ^= a >>>  9; c = add(c, h); a = add(a, b);\n    }"
pipeline_tag: feature-extraction
library_name: sentence-transformers
---

# SPLADE Sparse Encoder

This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [Shuu12121/CodeModernBERT-Finch](https://huggingface.co/Shuu12121/CodeModernBERT-Finch) using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30005-dimensional sparse vector space   and can be used for semantic search and sparse retrieval.
## Model Details

### Model Description
- **Model Type:** SPLADE Sparse Encoder
- **Base model:** [Shuu12121/CodeModernBERT-Finch](https://huggingface.co/Shuu12121/CodeModernBERT-Finch) <!-- at revision 8159a3905097a6cea798bb86d548caed9c1ad37d -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 30005 dimensions
- **Similarity Function:** Dot Product
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)

### Full Model Architecture

```
SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'ModernBertForMaskedLM'})
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30005})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("sparse_encoder_model_id")
# Run inference
sentences = [
    'Will detect inputs that begin with @MyNamespace/... and replace the namespace with the corresponding path.\n\n@see \\Assetic\\Factory\\AssetFactory::parseInput()',
    'protected function parseInput($input, array $options = array())\n    {\n        $matches = null;\n        // search for @MyNamespace/path/to/asset\n        if (preg_match("|^\\@([a-z_][_a-z0-9]*)/|i", $input, $matches)) {\n            $ns = $matches[1];\n            if (!array_key_exists($ns, $this->namespaces)) {\n                throw new \\RuntimeException("$ns : unknown namespace !");\n            }\n            $input = $this->namespaces[$ns] . substr($input, strlen($ns) + 1);\n        }\n        return parent::parseInput($input, $options);\n    }',
    'function seed_mix() {\n      a ^= b <<  11; d = add(d, a); b = add(b, c);\n      b ^= c >>>  2; e = add(e, b); c = add(c, d);\n      c ^= d <<   8; f = add(f, c); d = add(d, e);\n      d ^= e >>> 16; g = add(g, d); e = add(e, f);\n      e ^= f <<  10; h = add(h, e); f = add(f, g);\n      f ^= g >>>  4; a = add(a, f); g = add(g, h);\n      g ^= h <<   8; b = add(b, g); h = add(h, a);\n      h ^= a >>>  9; c = add(c, h); a = add(a, b);\n    }',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 30005]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[26.3028, 23.1010,  3.4799],
#         [23.1010, 42.4588,  6.9869],
#         [ 3.4799,  6.9869, 59.2962]])
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 1,441,500 training samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | text1                                                                               | text2                                                                                 | label                                                         |
  |:--------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:--------------------------------------------------------------|
  | type    | string                                                                              | string                                                                                | float                                                         |
  | details | <ul><li>min: 3 tokens</li><li>mean: 49.63 tokens</li><li>max: 1024 tokens</li></ul> | <ul><li>min: 28 tokens</li><li>mean: 180.64 tokens</li><li>max: 6082 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
* Samples:
  | text1                                                                                                                             | text2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | label            |
  |:----------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>// makeWin32File makes a new win32File from an existing file handle</code>                                                  | <code>func makeWin32File(h syscall.Handle) (*win32File, error) {<br>	f := &win32File{handle: h}<br>	ioInitOnce.Do(initIo)<br>	_, err := createIoCompletionPort(h, ioCompletionPort, 0, 0xffffffff)<br>	if err != nil {<br>		return nil, err<br>	}<br>	err = setFileCompletionNotificationModes(h, cFILE_SKIP_COMPLETION_PORT_ON_SUCCESS|cFILE_SKIP_SET_EVENT_ON_HANDLE)<br>	if err != nil {<br>		return nil, err<br>	}<br>	f.readDeadline.channel = make(timeoutChan)<br>	f.writeDeadline.channel = make(timeoutChan)<br>	return f, nil<br>}</code> | <code>1.0</code> |
  | <code>// Convert_v1_FlexPersistentVolumeSource_To_core_FlexPersistentVolumeSource is an autogenerated conversion function.</code> | <code>func Convert_v1_FlexPersistentVolumeSource_To_core_FlexPersistentVolumeSource(in *v1.FlexPersistentVolumeSource, out *core.FlexPersistentVolumeSource, s conversion.Scope) error {<br>	return autoConvert_v1_FlexPersistentVolumeSource_To_core_FlexPersistentVolumeSource(in, out, s)<br>}</code>                                                                                                                                                                                                                                            | <code>1.0</code> |
  | <code>// AddRunCmd is defined on the RunCmdsConfig interface.</code>                                                              | <code>func (cfg *cloudConfig) AddRunCmd(args ...string) {<br>	cfg.attrs["runcmd"] = append(cfg.RunCmds(), strings.Join(args, " "))<br>}</code>                                                                                                                                                                                                                                                                                                                                                                                                      | <code>1.0</code> |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json
  {
      "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
      "document_regularizer_weight": 3e-05,
      "query_regularizer_weight": 5e-05
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset

* Size: 6,000 evaluation samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | text1                                                                              | text2                                                                                 | label                                                         |
  |:--------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:--------------------------------------------------------------|
  | type    | string                                                                             | string                                                                                | float                                                         |
  | details | <ul><li>min: 3 tokens</li><li>mean: 45.53 tokens</li><li>max: 495 tokens</li></ul> | <ul><li>min: 29 tokens</li><li>mean: 183.92 tokens</li><li>max: 7677 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
* Samples:
  | text1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | text2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | label            |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>// establish data storage, format and dimensions of a     renderbuffer object's image</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <code>func RenderbufferStorage(target uint32, internalformat uint32, width int32, height int32) {<br>	syscall.Syscall6(gpRenderbufferStorage, 4, uintptr(target), uintptr(internalformat), uintptr(width), uintptr(height), 0, 0)<br>}</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <code>1.0</code> |
  | <code>// GetObject is a wrapper around gtk_builder_get_object(). The returned result<br>// is an IObject, so it will need to be type-asserted to the appropriate type before<br>// being used. For example, to get an object and type assert it as a window:<br>//<br>//   obj, err := builder.GetObject("window")<br>//   if err != nil {<br>//       // object not found<br>//       return<br>//   }<br>//   if w, ok := obj.(*gtk.Window); ok {<br>//       // do stuff with w here<br>//   } else {<br>//       // not a *gtk.Window<br>//   }<br>//</code> | <code>func (b *Builder) GetObject(name string) (glib.IObject, error) {<br>	cstr := C.CString(name)<br>	defer C.free(unsafe.Pointer(cstr))<br>	c := C.gtk_builder_get_object(b.native(), (*C.gchar)(cstr))<br>	if c == nil {<br>		return nil, errors.New("object '" + name + "' not found")<br>	}<br>	obj, err := cast(c)<br>	if err != nil {<br>		return nil, err<br>	}<br>	return obj, nil<br>}</code>                                                                                                                                                                                                                                                                                                                                                                                  | <code>1.0</code> |
  | <code>// augmentGoroutine processes source files to improve call to be more<br>// descriptive.<br>//<br>// It modifies the routine.</code>                                                                                                                                                                                                                                                                                                                                                                                                                       | <code>func (c *cache) augmentGoroutine(goroutine *Goroutine) {<br>	if c.files == nil {<br>		c.files = map[string][]byte{}<br>	}<br>	if c.parsed == nil {<br>		c.parsed = map[string]*parsedFile{}<br>	}<br>	// For each call site, look at the next call and populate it. Then we can<br>	// walk back and reformat things.<br>	for i := range goroutine.Stack.Calls {<br>		c.load(goroutine.Stack.Calls[i].LocalSrcPath)<br>	}<br><br>	// Once all loaded, we can look at the next call when available.<br>	for i := 0; i < len(goroutine.Stack.Calls)-1; i++ {<br>		// Get the AST from the previous call and process the call line with it.<br>		if f := c.getFuncAST(&goroutine.Stack.Calls[i]); f != nil {<br>			processCall(&goroutine.Stack.Calls[i], f)<br>		}<br>	}<br>}</code> | <code>1.0</code> |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json
  {
      "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
      "document_regularizer_weight": 3e-05,
      "query_regularizer_weight": 5e-05
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 2
- `gradient_accumulation_steps`: 25
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 2
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 25
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch  | Step  | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0173 | 500   | 252.5855      |
| 0.0347 | 1000  | 0.4281        |
| 0.0520 | 1500  | 0.071         |
| 0.0694 | 2000  | 0.0579        |
| 0.0867 | 2500  | 0.04          |
| 0.1041 | 3000  | 0.0422        |
| 0.1214 | 3500  | 0.041         |
| 0.1387 | 4000  | 0.0347        |
| 0.1561 | 4500  | 0.0341        |
| 0.1734 | 5000  | 0.0288        |
| 0.1908 | 5500  | 0.0243        |
| 0.2081 | 6000  | 0.0249        |
| 0.2255 | 6500  | 0.0242        |
| 0.2428 | 7000  | 0.0204        |
| 0.2601 | 7500  | 0.0206        |
| 0.2775 | 8000  | 0.0198        |
| 0.2948 | 8500  | 0.0205        |
| 0.3122 | 9000  | 0.0176        |
| 0.3295 | 9500  | 0.0207        |
| 0.3469 | 10000 | 0.0196        |
| 0.3642 | 10500 | 0.0132        |
| 0.3815 | 11000 | 0.016         |
| 0.3989 | 11500 | 0.0151        |
| 0.4162 | 12000 | 0.0168        |
| 0.4336 | 12500 | 0.0161        |
| 0.4509 | 13000 | 0.0156        |
| 0.4683 | 13500 | 0.0134        |
| 0.4856 | 14000 | 0.0156        |
| 0.5029 | 14500 | 0.0138        |
| 0.5203 | 15000 | 0.0134        |
| 0.5376 | 15500 | 0.0146        |
| 0.5550 | 16000 | 0.0153        |
| 0.5723 | 16500 | 0.0135        |
| 0.5897 | 17000 | 0.0136        |
| 0.6070 | 17500 | 0.0122        |
| 0.6243 | 18000 | 0.0115        |
| 0.6417 | 18500 | 0.0132        |
| 0.6590 | 19000 | 0.0101        |
| 0.6764 | 19500 | 0.0092        |
| 0.6937 | 20000 | 0.0117        |
| 0.7111 | 20500 | 0.0098        |
| 0.7284 | 21000 | 0.0122        |
| 0.7458 | 21500 | 0.0102        |
| 0.7631 | 22000 | 0.0088        |
| 0.7804 | 22500 | 0.0093        |
| 0.7978 | 23000 | 0.0101        |
| 0.8151 | 23500 | 0.0083        |
| 0.8325 | 24000 | 0.0095        |
| 0.8498 | 24500 | 0.0081        |
| 0.8672 | 25000 | 0.0095        |
| 0.8845 | 25500 | 0.009         |
| 0.9018 | 26000 | 0.0081        |
| 0.9192 | 26500 | 0.0065        |
| 0.9365 | 27000 | 0.009         |
| 0.9539 | 27500 | 0.0075        |
| 0.9712 | 28000 | 0.0078        |
| 0.9886 | 28500 | 0.0094        |


### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.0.0
- Transformers: 4.53.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### SpladeLoss
```bibtex
@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}
```

#### SparseMultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

#### FlopsLoss
```bibtex
@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->