Update README.md
Browse files
README.md
CHANGED
@@ -67,8 +67,8 @@ This model is a SentenceTransformer fine-tuned from [`Shuu12121/CodeModernBERT-O
|
|
67 |
| Metric | Score |
|
68 |
|---------------------------|--------------------|
|
69 |
| Pearson Cosine (Train) | `0.9481` |
|
70 |
-
| Accuracy (Test) | `0.
|
71 |
-
| F1 Score (Test) | `0.
|
72 |
|
73 |
---
|
74 |
|
@@ -100,13 +100,63 @@ similarity_score = cosine_similarity(embeddings[0].unsqueeze(0), embeddings[1].u
|
|
100 |
|
101 |
# Print the result
|
102 |
print(f"Cosine Similarity: {similarity_score:.4f}")
|
103 |
-
if similarity_score >= 0.
|
104 |
print("🟢 These code snippets are considered CLONES.")
|
105 |
else:
|
106 |
print("🔴 These code snippets are NOT considered clones.")
|
107 |
```
|
|
|
|
|
108 |
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
## 🛠️ Model Architecture
|
112 |
|
|
|
67 |
| Metric | Score |
|
68 |
|---------------------------|--------------------|
|
69 |
| Pearson Cosine (Train) | `0.9481` |
|
70 |
+
| Accuracy (Test) | `0.9902` |
|
71 |
+
| F1 Score (Test) | `0.9637` |
|
72 |
|
73 |
---
|
74 |
|
|
|
100 |
|
101 |
# Print the result
|
102 |
print(f"Cosine Similarity: {similarity_score:.4f}")
|
103 |
+
if similarity_score >= 0.9:
|
104 |
print("🟢 These code snippets are considered CLONES.")
|
105 |
else:
|
106 |
print("🔴 These code snippets are NOT considered clones.")
|
107 |
```
|
108 |
+
## 🧪 How to Test
|
109 |
+
!pip install -U sentence-transformers datasets
|
110 |
|
111 |
+
from sentence_transformers import SentenceTransformer
|
112 |
+
from datasets import load_dataset
|
113 |
+
import torch
|
114 |
+
from sklearn.metrics import accuracy_score, f1_score
|
115 |
+
|
116 |
+
# --- データセットのロード ---
|
117 |
+
ds_test = load_dataset("google/code_x_glue_cc_clone_detection_big_clone_bench", split="test")
|
118 |
+
|
119 |
+
model = SentenceTransformer("Shuu12121/CodeCloneDetection-ModernBERT-Owl")
|
120 |
+
model.to("cuda")
|
121 |
+
|
122 |
+
|
123 |
+
test_sentences1 = ds_test["func1"]
|
124 |
+
test_sentences2 = ds_test["func2"]
|
125 |
+
test_labels = ds_test["label"]
|
126 |
+
|
127 |
+
batch_size = 256 # GPUメモリに合わせて調整
|
128 |
+
|
129 |
+
print("Encoding sentences1...")
|
130 |
+
|
131 |
+
embeddings1 = model.encode(
|
132 |
+
test_sentences1,
|
133 |
+
convert_to_tensor=True,
|
134 |
+
batch_size=batch_size,
|
135 |
+
show_progress_bar=True
|
136 |
+
)
|
137 |
+
|
138 |
+
print("Encoding sentences2...")
|
139 |
+
embeddings2 = model.encode(
|
140 |
+
test_sentences2,
|
141 |
+
convert_to_tensor=True,
|
142 |
+
batch_size=batch_size,
|
143 |
+
show_progress_bar=True
|
144 |
+
)
|
145 |
+
|
146 |
+
print("Calculating cosine scores...")
|
147 |
+
cosine_scores = torch.nn.functional.cosine_similarity(embeddings1, embeddings2)
|
148 |
+
|
149 |
+
# 閾値設定(ここでは0.9を採用)
|
150 |
+
threshold = 0.9
|
151 |
+
print(f"Using threshold: {threshold}")
|
152 |
+
predictions = (cosine_scores > threshold).long().cpu().numpy()
|
153 |
+
|
154 |
+
accuracy = accuracy_score(test_labels, predictions)
|
155 |
+
f1 = f1_score(test_labels, predictions)
|
156 |
+
print("Test Accuracy:", accuracy)
|
157 |
+
print("Test F1 Score:", f1)
|
158 |
+
|
159 |
+
```
|
160 |
|
161 |
## 🛠️ Model Architecture
|
162 |
|