ppo-LunarLander-v2 / config.json
ShuwenZheng's picture
Upload PPO LunarLander-v2 trained agent
252256b
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x796510bc03a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x796510bc0430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x796510bc04c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x796510bc0550>", "_build": "<function ActorCriticPolicy._build at 0x796510bc05e0>", "forward": "<function ActorCriticPolicy.forward at 0x796510bc0670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x796510bc0700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x796510bc0790>", "_predict": "<function ActorCriticPolicy._predict at 0x796510bc0820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x796510bc08b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x796510bc0940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x796510bc09d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x796510bafc00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692274284070500247, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1NFT1RurM/wJ7/PnX/+r2P3e+7SuCOPQAAAAAAAAAAZtaEO0hLkLpN2h86ZLQDtqSVmjpW5zi5AACAPwAAgD9m99a89qh1umYLc7nizma0nPUxu/kijjgAAIA/AACAP7MjML0p7GO6j6pHOyTbXTiZGi07jcLzuQAAgD8AAIA/rQwMPhIWzz6ys2G8LD6Yvhae4D2jvpc8AAAAAAAAAAAAQ8M8KZBNuk0TIju9dpW1h4BEu8Cfm7QAAIA/AACAPziR2L4I35A+qmOwPluMdb6y27i9fLeVPQAAAAAAAAAAZr4SOxRYnbpcFiY5ADIdNGPkT7l+kT+4AACAPwAAgD/NIZG8CJuwPk66JzzDopC+c5lWPNnwv70AAAAAAAAAAGZMRbx86GU9+oI3vv4fL75C87+9VZuiPAAAAAAAAAAAmlHYu8PFYLpNTu+6z0LwtcteLjtSoAw6AACAPwAAgD+meL8+hYLtPgiHWz1T4Ja+dRlLPgq3hz0AAAAAAAAAAJqtn7wfHf65WzpWOzy7oDXabVy7zT+AugAAgD8AAIA/ZhGCvY/Gf7oNA7U61jcAON1r7znle1S5AACAPwAAgD/mpW09yuAFPyrilL1fqJe+1LcpvNAsbb0AAAAAAAAAADNYej17tpi6hdKQu5VmJzb7mY064kCnOgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGVfDd56dDqMAWyUTegDjAF0lEdAktRR4Uvf0nV9lChoBkdAZO13ueBg/mgHTegDaAhHQJLVqdc0Ltx1fZQoaAZHQGJCHEVFhG9oB03oA2gIR0CS3mLoOhCddX2UKGgGR0BkpvYao/A1aAdN6ANoCEdAkuCH8CPp6nV9lChoBkdAYVL0K7ZnMGgHTegDaAhHQJLkyxcE/0N1fZQoaAZHQGLQreANG3FoB03oA2gIR0CS5fUt7KJVdX2UKGgGR0BmTToB7u2JaAdN6ANoCEdAkuZVRxcVxnV9lChoBkdAZFaCqZML4WgHTegDaAhHQJLow+W4Vh11fZQoaAZHQGQkX9rGipNoB03oA2gIR0CS6XbdJrckdX2UKGgGR0BkhaTwDvE1aAdN6ANoCEdAkuqqXKKYRnV9lChoBkdAYfFG3F1jiGgHTegDaAhHQJMC02aUiY91fZQoaAZHQGF6YNRWLgpoB03oA2gIR0CTBwBBAv+PdX2UKGgGR0Bnwo3974SIaAdN6ANoCEdAkwcOBxxT9HV9lChoBkdAY9JYKYzBRGgHTegDaAhHQJMKvL6k6911fZQoaAZHQGYoH4oJAt5oB03oA2gIR0CTC03qzJIUdX2UKGgGR0Bi6rIJZ4fPaAdN6ANoCEdAkx2QYYR/VnV9lChoBkdAYsi+hXbM5mgHTegDaAhHQJMkglu3trt1fZQoaAZHQGAuPM8ox59oB03oA2gIR0CTJgGQ0XP7dX2UKGgGR0BklumBOHnEaAdN6ANoCEdAkzHotDlYEHV9lChoBkdAYfiBFNL13GgHTegDaAhHQJM1byQPqcF1fZQoaAZHQGFEoWP91lpoB03oA2gIR0CTPGDTBqKxdX2UKGgGR0Bhs/+Q2dd3aAdN6ANoCEdAkz45AyEcsHV9lChoBkdAZFTgiu+yq2gHTegDaAhHQJM+zViF0xN1fZQoaAZHQGGIB42S+xpoB03oA2gIR0CTQZ3Lmp2mdX2UKGgGR0Bj311loUSJaAdN6ANoCEdAk0JXKwIMSnV9lChoBkdAYUXTXJ5miGgHTegDaAhHQJNDft3OfNB1fZQoaAZHQGYsWt2cJ+loB03oA2gIR0CTVVYKpkwwdX2UKGgGR0BinfRLK3d9aAdN6ANoCEdAk1l4Jmdy1nV9lChoBkdAYKa7aqS5iGgHTegDaAhHQJNZhS0jTrp1fZQoaAZHQGdA0wi7kGRoB03oA2gIR0CTXWYEGJN1dX2UKGgGR0BhRMEcKgIyaAdN6ANoCEdAk14Gt2cJ+nV9lChoBkdATvhM8HObAmgHS99oCEdAk2UKGHpKSXV9lChoBkdAZ7S5sj3VTmgHTegDaAhHQJNychvBJqZ1fZQoaAZHQGa2ymZVn29oB03oA2gIR0CTevKb8WKudX2UKGgGR0BgMIwVTJhfaAdN6ANoCEdAk3zXx8UmD3V9lChoBkdAYlRn2ZiNKmgHTegDaAhHQJOFmtq59Vp1fZQoaAZHQGZCq1og3cZoB03oA2gIR0CTh896C17ZdX2UKGgGR0BkjjKeTV2BaAdN6ANoCEdAk4wRF3IMjXV9lChoBkdAY1J+d9Ujs2gHTegDaAhHQJONOkO7QLN1fZQoaAZHQGQYfBnBciZoB03oA2gIR0CTjZTtb9qDdX2UKGgGR0Bki8BS1maqaAdN6ANoCEdAk5AIoZydWnV9lChoBkdAaFMZdfLLZGgHTegDaAhHQJOQt0hePaN1fZQoaAZHQGZ02NFSbYtoB03oA2gIR0CTkeSmqHXVdX2UKGgGR0Bi4OYSg5BDaAdN6ANoCEdAk5MOQhfShXV9lChoBkdASkOy9mHxjWgHS8ZoCEdAk6jMz/IbO3V9lChoBkdAZdTVI7Njb2gHTegDaAhHQJOo/1Gsmv51fZQoaAZHQGJ+3rMTviNoB03oA2gIR0CTrplsP8Q7dX2UKGgGR0BjJ8LBsQ/YaAdN6ANoCEdAk6913Y+SsHV9lChoBkdAZa3DXOGCZmgHTegDaAhHQJO4vTCtRvZ1fZQoaAZHQGTn/6oESuhoB03oA2gIR0CTwtf1HvtudX2UKGgGR0BGVvF3pwCKaAdL/WgIR0CTx9T2nKnvdX2UKGgGR0BjBjVUdaMaaAdN6ANoCEdAk8g0bHZK4HV9lChoBkdAZjcfhddE9mgHTegDaAhHQJPJZwrDqGF1fZQoaAZHQGLXJbD/EO1oB03oA2gIR0CT0TyO7xusdX2UKGgGR0Bmg+CsfaHsaAdN6ANoCEdAk9NKfOD8L3V9lChoBkdAYUc55JK8MGgHTegDaAhHQJPXU176YVt1fZQoaAZHQGeFuNPxhDxoB03oA2gIR0CT2GlcyFfzdX2UKGgGR0BktbDsMRYjaAdN6ANoCEdAk9s4dlum8HV9lChoBkdAZAzsO5J9RmgHTegDaAhHQJPb5yWAwwl1fZQoaAZHQHND881XNkhoB02LAWgIR0CT3GJq7AcldX2UKGgGR0Bhmh2GIsRQaAdN6ANoCEdAk9z53X7LuHV9lChoBkdAZu6O4oZydWgHTegDaAhHQJPeEXQ+lj51fZQoaAZHQGU7uryUcGVoB03oA2gIR0CT+JHnEETydX2UKGgGR0Bj7Kji4rjHaAdN6ANoCEdAk/i40ZWJanV9lChoBkdASSANsnAqNWgHS+doCEdAk/mvnnuAqnV9lChoBkdAYfpA9FF2FGgHTegDaAhHQJP8V5iVjZt1fZQoaAZHQGW8N9H+ZPVoB03oA2gIR0CT/NpIMBp6dX2UKGgGR0BD0Z0CA+Y/aAdL4WgIR0CUB9x9G7SRdX2UKGgGR0Bi7pzJZGKAaAdN6ANoCEdAlAuVp0wJxHV9lChoBkdAZ8QSQo1DSmgHTegDaAhHQJQQkuGsV+J1fZQoaAZHQF8fuVHFxXJoB03oA2gIR0CUEav99+gEdX2UKGgGR0BlNyKvV3EAaAdN6ANoCEdAlBom7Wd3CHV9lChoBkdAYXd1+y7f52gHTegDaAhHQJQcVVAAyVR1fZQoaAZHQGE8W0zCUHJoB03oA2gIR0CUIPc+qzZ6dX2UKGgGR0Bjt08JUo8ZaAdN6ANoCEdAlCbEW/JvHnV9lChoBkdAYuqF9KEnLWgHTegDaAhHQJQn0eIVM251fZQoaAZHQG5QWoNutOpoB01OA2gIR0CUKF0rbxmTdX2UKGgGR0Bl6oN/e+EiaAdN6ANoCEdAlCiTqbBoEnV9lChoBkdAZVZiPQv6CWgHTegDaAhHQJQpeTkhib51fZQoaAZHQGGs6Rhc7hhoB03oA2gIR0CUKv5imVJMdX2UKGgGR0BmU3H5rP+oaAdN6ANoCEdAlEKoDHOryXV9lChoBkdAZerJlJ6IFmgHTegDaAhHQJRCzC1qnFZ1fZQoaAZHQDJidjG1hLJoB0vLaAhHQJRFEZqEeyR1fZQoaAZHQGBZQcHWz4VoB03oA2gIR0CURmrt3OfNdX2UKGgGR0BGyng5zYEoaAdL6GgIR0CUTZE3Kji5dX2UKGgGR0BItHQpnYg8aAdLzmgIR0CUTu0w8GLUdX2UKGgGR0Bk1Pqs2eg+aAdN6ANoCEdAlFIWDL8rJHV9lChoBkdAYdkjOcDr7mgHTegDaAhHQJRVyHUMG5d1fZQoaAZHQETM3UhFEzBoB0vgaAhHQJRakqG1x851fZQoaAZHQGWqAx8D0UZoB03oA2gIR0CUWsb+Lm6odX2UKGgGR0BikbYTTOPeaAdN6ANoCEdAlFvaagElmnV9lChoBkdAZjOeEqUeMmgHTegDaAhHQJRmN4dIXj51fZQoaAZHQGT+jPGACnxoB03oA2gIR0CUaTMefZmJdX2UKGgGR0Bm+sE5hjOLaAdN6ANoCEdAlG9LU9ZA6nV9lChoBkdAY3odwNsnA2gHTegDaAhHQJR1USOBDoh1fZQoaAZHQGc7JbD/EO1oB03oA2gIR0CUdcMkyDZldX2UKGgGR0Bi7Gh0yP+5aAdN6ANoCEdAlHXyJbdJrnV9lChoBkdAYFRtgrpaBGgHTegDaAhHQJR2r0/W1+l1fZQoaAZHQGXwzrmhdt5oB03oA2gIR0CUd/lXzUZvdX2UKGgGR0BlvQaNuLrHaAdN6ANoCEdAlHx28VYZEXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}