asr-model / model.py
Sin2pi's picture
Update model.py
9578ddb verified
raw
history blame
71.3 kB
import pyworld as pw
import os
import math
import warnings
import logging
import gzip
import base64
import torch
import torchaudio
import torch.nn.functional as F
import torch.nn.init as init
from torch import nn, Tensor
import numpy as np
from einops import rearrange
import matplotlib.pyplot as plt
from typing import Optional, Dict, Union, List, Tuple, Any
from functools import partial
from datetime import datetime
from datasets import load_dataset, Audio
from transformers.trainer_seq2seq import Seq2SeqTrainer
from transformers.training_args_seq2seq import Seq2SeqTrainingArguments
import transformers
import evaluate
from dataclasses import dataclass
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.set_float32_matmul_precision('high')
transformers.utils.logging.set_verbosity_error()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dtype = torch.float32
warnings.filterwarnings("ignore")
logging.basicConfig(level=logging.ERROR)
from rich.traceback import install
install(show_locals=True)
import pretty_errors
pretty_errors.configure(
separator_character = '*',
filename_display = pretty_errors.FILENAME_EXTENDED,
line_number_first = True,
display_link = True,
lines_before = 5,
lines_after = 2,
line_color = pretty_errors.RED + '> ' + pretty_errors.default_config.line_color,
code_color = ' ' + pretty_errors.default_config.line_color,
)
extractor = None
tokenizer = None
optimizer = None
scheduler = None
model = None
Residual = None
MultiheadA = None
@dataclass
class Dimensions:
vocab: int
text_ctx: int
text_dims: int
text_head: int
text_idx: int
mels: int
aud_ctx: int
aud_dims: int
aud_head: int
aud_idx: int
act: str
debug: List[str]
cross_attn: bool
features: List[str]
def plot_waveform(x=None, w=None, p=None, per=None, sample_idx=0, sr=16000, hop_length=160,
title="", markers=None, marker_labels=None,
show_voiced_regions=True, show_energy=False):
num_plots = sum([x is not None, w is not None, p is not None, per is not None])
if num_plots == 0:
raise ValueError("No data to plot. Please provide at least one input tensor.")
time_spans = []
if w is not None:
w_np = w[sample_idx].detach().cpu().numpy()
if w_np.ndim > 1:
w_np = w_np.squeeze()
time_spans.append(len(w_np) / sr)
if x is not None:
x_np = x[sample_idx].detach().cpu().numpy()
if x_np.shape[0] < x_np.shape[1]:
x_np = x_np.T
time_spans.append(x_np.shape[0] * hop_length / sr)
if p is not None:
p_np = p[sample_idx].detach().cpu().numpy()
if p_np.ndim > 1:
p_np = p_np.squeeze()
time_spans.append(len(p_np) * hop_length / sr)
if per is not None:
per_np = per[sample_idx].detach().cpu().numpy()
if per_np.ndim > 1:
per_np = per_np.squeeze()
time_spans.append(len(per_np) * hop_length / sr)
max_time = max(time_spans) if time_spans else 0
fig, axs = plt.subplots(num_plots, 1, figsize=(14, 4*num_plots), sharex=True)
if num_plots == 1:
axs = [axs]
if show_voiced_regions and per is not None:
per_np = per[sample_idx].detach().cpu().numpy()
if per_np.ndim > 1:
per_np = per_np.squeeze()
t_per = np.arange(len(per_np)) * hop_length / sr
threshold = 0.5
for ax in axs:
for i in range(len(per_np)-1):
if per_np[i] > threshold:
ax.axvspan(t_per[i], t_per[i+1], color='lightblue', alpha=0.2, zorder=0)
current_ax = 0
if w is not None:
w_np = w[sample_idx].detach().cpu().numpy()
if w_np.ndim > 1:
w_np = w_np.squeeze()
t = np.arange(len(w_np)) / sr
axs[current_ax].plot(t, w_np, color="tab:blue")
if show_energy:
frame_length = hop_length
hop_length_energy = hop_length // 2
energy = []
for i in range(0, len(w_np)-frame_length, hop_length_energy):
frame = w_np[i:i+frame_length]
energy.append(np.sqrt(np.mean(frame**2)))
energy = np.array(energy)
energy = energy / np.max(energy) * 0.8 * max(abs(w_np.min()), abs(w_np.max()))
t_energy = np.arange(len(energy)) * hop_length_energy / sr
axs[current_ax].plot(t_energy, energy, color="red", alpha=0.7, label="Energy")
axs[current_ax].legend(loc='upper right')
axs[current_ax].set_title("Waveform")
axs[current_ax].set_ylabel("Amplitude")
axs[current_ax].set_xlim([0, max_time])
axs[current_ax].grid(True, axis='x', linestyle='--', alpha=0.3)
current_ax += 1
if x is not None:
x_np = x[sample_idx].detach().cpu().numpy()
if x_np.shape[0] < x_np.shape[1]:
x_np = x_np.T
im = axs[current_ax].imshow(x_np.T, aspect="auto", origin="lower", cmap="magma",
extent=[0, x_np.shape[0]*hop_length/sr, 0, x_np.shape[1]])
axs[current_ax].set_title("Spectrogram")
axs[current_ax].set_ylabel("Mel Bin")
axs[current_ax].set_xlim([0, max_time])
axs[current_ax].grid(True, axis='x', linestyle='--', alpha=0.3)
current_ax += 1
if p is not None:
p_np = p[sample_idx].detach().cpu().numpy()
if p_np.ndim > 1:
p_np = p_np.squeeze()
t_p = np.arange(len(p_np)) * hop_length / sr
axs[current_ax].plot(t_p, p_np, color="tab:green")
axs[current_ax].set_title("Pitch")
axs[current_ax].set_ylabel("Frequency (Hz)")
axs[current_ax].set_xlim([0, max_time])
axs[current_ax].grid(True, axis='both', linestyle='--', alpha=0.3)
axs[current_ax].set_ylim([0, min(1000, p_np.max() * 1.2)])
current_ax += 1
if per is not None:
per_np = per[sample_idx].detach().cpu().numpy()
if per_np.ndim > 1:
per_np = per_np.squeeze()
t_per = np.arange(len(per_np)) * hop_length / sr
axs[current_ax].plot(t_per, per_np, color="tab:red")
axs[current_ax].set_title("Period (Voice Activity)")
axs[current_ax].set_ylabel("periodocity")
axs[current_ax].set_xlim([0, max_time])
axs[current_ax].grid(True, axis='both', linestyle='--', alpha=0.3)
axs[current_ax].set_ylim([-0.05, 1.05])
axs[current_ax].axhline(y=0.5, color='k', linestyle='--', alpha=0.3)
if markers is not None:
for i, t in enumerate(markers):
label = marker_labels[i] if marker_labels and i < len(marker_labels) else None
for ax in axs:
ax.axvline(x=t, color='k', linestyle='-', alpha=0.7, label=label if i == 0 else None)
if marker_labels:
axs[0].legend(loc='upper right', fontsize='small')
axs[-1].set_xlabel("Time (s)")
fig.suptitle(title, fontsize=16)
plt.tight_layout(rect=[0, 0, 1, 0.97])
plt.show()
return fig
def dict_to(d, device, dtype=dtype):
"""Because PyTorch should have this built-in but doesn't"""
return {k: v.to(device, dtype) if isinstance(v, torch.Tensor) else v
for k, v in d.items()}
def exists(v):
return v is not None
def default(v, b):
return v if exists(v) else b
class Conv1d(nn.Conv1d):
def _conv_forward(
self, x: Tensor, weight: Tensor, bias) -> Tensor:
return super()._conv_forward(x, weight.to(x.device, x.dtype), None if bias is None else bias.to(x.device, x.dtype))
class Conv2d(nn.Conv2d):
def _conv_forward(
self, x: Tensor, weight: Tensor, bias) -> Tensor:
return super()._conv_forward(x, weight.to(x.device, x.dtype), None if bias is None else bias.to(x.device, x.dtype))
class Linear(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None:
super(Linear, self).__init__()
self.linear = nn.Linear(in_features, out_features, bias=bias)
init.xavier_uniform_(self.linear.weight)
if bias:
init.zeros_(self.linear.bias)
def forward(self, x: Tensor) -> Tensor:
return self.linear(x)
class RMSNorm(nn.Module):
def __init__(self, dims: Union[int, Tensor, List, Tuple],
eps = 1e-8, elementwise_affine = True):
super(RMSNorm, self).__init__()
if isinstance(dims, int):
self.normalized_shape = (dims,)
else:
self.normalized_shape = tuple(dims)
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = nn.Parameter(torch.empty(self.normalized_shape))
init.ones_(self.weight)
else:
self.register_parameter("weight", None)
def forward(self, x):
return F.rms_norm(x, self.normalized_shape, self.weight, self.eps)
def LayerNorm(x: Tensor, normalized_shape: Union[int, Tensor, List, Tuple],
weight: Optional[Tensor] = None, bias: Optional[Tensor] = None,
eps: float = 1e-5) -> Tensor:
return F.layer_norm(x, normalized_shape, weight, bias, eps)
def get_device():
return torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def get_dtype():
return torch.float32 if torch.cuda.is_available() else torch.float64
def tox():
return {"device": get_device(), "dtype": get_dtype()}
def sinusoids(length, channels, max_timescale=10000):
assert channels % 2 == 0
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
def align_f0(f0, ctx):
b, l = f0.shape
if l == ctx:
return f0.squeeze(0).float()
frames_per_token = l / ctx
idx = torch.arange(ctx, device=device, dtype=dtype)
src_idx = (idx * frames_per_token).long().clamp(0, l-1)
batch_idx = torch.arange(b, device=device, dtype=dtype).unsqueeze(1)
f0 = f0[batch_idx, src_idx]
return f0.squeeze(0).float()
def align_f0(f0, target_length, method='nearest', device=device, dtype=dtype):
if device is None:
device = f0.device
if dtype is None:
dtype = f0.dtype
original_shape = f0.shape
squeeze_batch = False
reshape_back = None
if f0.dim() == 1:
f0 = f0.unsqueeze(0)
squeeze_batch = True
elif f0.dim() == 2:
pass
elif f0.dim() == 3:
batch_size, ctx, length = f0.shape
f0 = f0.view(-1, length)
reshape_back = (batch_size, ctx)
else:
raise ValueError(f"F0 tensor must be 1D, 2D, or 3D, got {f0.dim()}D")
batch_size, current_length = f0.shape
if current_length == target_length:
result = f0
elif method == 'nearest':
frames_per_token = current_length / target_length
target_indices = torch.arange(target_length, device=device, dtype=torch.float32)
source_indices = (target_indices * frames_per_token).long().clamp(0, current_length - 1)
batch_indices = torch.arange(batch_size, device=device, dtype=torch.long).unsqueeze(1)
result = f0[batch_indices, source_indices]
else:
import torch.nn.functional as F
f0_for_interp = f0.unsqueeze(1)
mode_map = {'linear': 'linear', 'cubic': 'bicubic'}
if method not in mode_map:
raise ValueError(f"Method '{method}' not supported. Use 'nearest', 'linear', or 'cubic'")
result = F.interpolate(
f0_for_interp.float(),
size=target_length,
mode=mode_map[method],
align_corners=False
).squeeze(1)
if reshape_back is not None:
result = result.view(reshape_back[0], reshape_back[1], target_length)
elif squeeze_batch:
result = result.squeeze(0)
return result.to(dtype)
# def update_base(self, f0):
# f0 = f0.to(device, dtype)
# f0_mean = f0.mean() + 1e-8
# # Standard RoPE calculation (keep this)
# theta_freqs = 1.0 / (f0_mean ** (torch.arange(0, self.dim, 2, device=device, dtype=dtype)[:(self.dim // 2)].float() / self.dim))
# # Direct f0-adapted mel scale (new part)
# center_freq = f0_mean
# min_freq = center_freq * 0.25 # Lower bound
# max_freq = center_freq * 4.0 # Upper bound
# # Direct mel calculation centered on f0
# mel_min = 2595 * torch.log10(1 + min_freq/700)
# mel_max = 2595 * torch.log10(1 + max_freq/700)
# mel_freqs = 700 * (torch.pow(10, torch.linspace(mel_min, mel_max, self.dim//2, device=device, dtype=dtype) / 2595) - 1) / 1000
# # Use a weighted combination
# self.inv_freq.data.copy_(0.5 * theta_freqs + 0.5 * mel_freqs)
# self.theta.data.copy_(f0_mean)
class rotary(nn.Module):
def __init__(self, dims, head, max_ctx=1500, theta=10000, radii=False, debug: List[str] = [],
use_pbias=False, spec_shape=None):
super().__init__()
self.use_pbias = use_pbias
self.last_f0_theta = None
self.debug = debug
self._counter = 0
self.dims = dims
self.head = head
self.head_dim = dims // head
self.max_ctx = max_ctx
self.radii = radii
self.learned_adaptation: bool = False
radius = 1
dim = self.head_dim
self.dim = dim
theta = torch.tensor(theta, device=device, dtype=dtype)
self.theta = nn.Parameter(torch.tensor(theta, device=device, dtype=dtype), requires_grad=True)
self.radius = nn.Parameter(torch.ones(radius, device=device, dtype=dtype), requires_grad=True)
inv_freq = (theta / 220.0) * 700 * (torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 8000/700)), dim // 2, device=device, dtype=dtype) / 2595) - 1) / 1000
self.inv_freq = nn.Parameter(torch.tensor(inv_freq, device=device, dtype=dtype), requires_grad=True)
def update_base(self, f0):
f0 = f0.squeeze(0).to(device, dtype)
theta = f0.mean() + 1e-8
inv_freq = (theta / 220.0) * 700 * (torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 8000/700)), self.dim // 2, device=device, dtype=dtype) / 2595) - 1) / 1000
self.inv_freq.data.copy_(inv_freq)
self.theta.data.copy_(theta)
def get_pitch_bias(self, f0):
if f0 is None:
return None
f0_flat = f0.squeeze().float()
f0_norm = (f0_flat - f0_flat.mean()) / (f0_flat.std() + 1e-8)
f0_sim = torch.exp(-torch.cdist(f0_norm.unsqueeze(1),
f0_norm.unsqueeze(1)) * self.pitch_scale)
return f0_sim.unsqueeze(0).unsqueeze(0)
def f0proj(self, f0):
self.f0_proj = nn.Linear(1, self.head_dim // 2, device=device, dtype=dtype)
f0 = f0.to(device, dtype)
f0 = self.f0_proj(f0.unsqueeze(-1))
return f0.to(device=device, dtype=dtype)
def align_f0(self, f0, ctx):
f0 = self.f0proj(f0)
print(f"Aligning f0 with context: {ctx}, f0 shape: {f0}")
if f0.dim() == 1:
length = f0.shape[0]
if length == ctx:
return f0
frames = length / ctx
idx = torch.arange(ctx, device=f0.device)
idx = (idx * frames).long().clamp(0, length - 1)
return f0[idx]
else:
length, dims = f0.shape
if length == ctx:
return f0
frames = length / ctx
idx = torch.arange(ctx, device=f0.device)
idx = (idx * frames).long().clamp(0, length - 1)
return f0[idx, :]
# def orthogonal(self, dims, i, j, theta):
# R = torch.eye(dims).to(theta.device)
# R[i, i] = torch.cos(theta)
# R[i, j] = -torch.sin(theta)
# R[j, i] = torch.sin(theta)
# R[j, j] = torch.cos(theta)
# R = torch.eye(dims).to(theta.device) - 2 * torch.outer(R, R) / torch.dot(R, R)
# return R
# def orthogonal_regularization_term(self):
# loss = torch.tensor(0.0, device=self.r_matrix.device)
# if self.r_matrix.requires_grad:
# product = torch.matmul(self.r_matrix, self.r_matrix.t())
# identity = torch.eye(self.r_matrix.size(0)).to(self.r_matrix.device)
# loss = ((product - identity) ** 2).sum()
# return self.orthogonal_reg_weight * loss
def forward(self, x=None, enc=None, layer=None, input_type="audio") -> Tensor:
f0 = enc.get("f0", None) if enc is not None else None
if isinstance(x, int):
ctx = x
elif isinstance(x, torch.Tensor) and x.ndim == 3:
batch, ctx, dims = x.shape
else:
batch, head, ctx, head_dim = x.shape
t = torch.arange(ctx, device=device, dtype=dtype)
if f0 is not None:
freqs = self.inv_freq
f0_mean = f0.mean()
theta = f0_mean + 1e-8
freqs = (theta / 220.0) * 700 * (torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 8000/700)), self.dim // 2, device=device, dtype=dtype) / 2595) - 1) / 1000
if "rotary1" in self.debug:
print(f"{layer}: {theta:.2f} : {f0_mean:.2f} : {ctx} ")
else:
freqs = self.inv_freq
freqs = t[:, None] * freqs[None, :]
# sinusoid_inp = torch.einsum('i, j -> i j', torch.arange(end=seq_len, device=x.device), self.inv_freq.to(device=x.device))
if self.radii:
if f0 is not None:
radius = self.align_f0(f0, ctx)
else:
radius = freqs
if "rotary2" in self.debug:
print(f"{layer} radius: {radius} ctx: {ctx}")
else:
radius = freqs
freqs = torch.polar(torch.ones_like(radius), freqs.unsqueeze(0))
if "rotary3" in self.debug:
print(f"{layer} radius: {f0.shape if f0 is not None else None} ctx: {ctx}")
self._counter += 1
return freqs.unsqueeze(0)
@staticmethod
def apply_rotary(x, freqs):
x1 = x[..., :freqs.shape[-1]*2]
x2 = x[..., freqs.shape[-1]*2:]
orig_shape = x1.shape
if x1.ndim == 2:
x1 = x1.unsqueeze(0)
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
x1 = torch.view_as_complex(x1) * freqs
x1 = torch.view_as_real(x1).flatten(-2)
x1 = x1.view(orig_shape)
return torch.cat([x1.type_as(x), x2], dim=-1)
class MultiheadA(nn.Module):
_seen = set()
rbf = False
def __init__(self, dims: int, head: int, rotary_emb: bool = True,
zero_val: float = 1e-4, minz: float = 1e-6, maxz: float = 1e-3, debug: List[str] = [], optim_attn=False):
super(MultiheadA, self).__init__()
self.dims = dims
self.head = head
self.head_dim = dims // head
self.debug = debug
self._counter = 0
self.q = Linear(dims, dims).to(device, dtype)
self.k = Linear(dims, dims, bias=False).to(device, dtype)
self.v = Linear(dims, dims).to(device, dtype)
self.o = Linear(dims, dims).to(device, dtype)
self.pad_token = 0
self.rotary_emb = rotary_emb
self.minz = minz
self.maxz = maxz
self.zero_val = zero_val
self.optim_attn = optim_attn
self.fzero = nn.Parameter(torch.tensor(zero_val, device=device, dtype=dtype), requires_grad=False)
if rotary_emb:
self.rope = rotary(
dims=dims,
head=head,
debug=debug,
radii=False,
)
else:
self.rope = None
def enhanced_attention_scores(self, q, k, rbf_sigma=1.0, rbf_ratio=0.0):
scale = (self.dims // self.head) ** -0.25
dot_scores = torch.matmul(q, k.transpose(-1, -2)) * scale
if rbf_ratio <= 0.0:
return dot_scores
q_norm = q.pow(2).sum(dim=-1, keepdim=True)
k_norm = k.pow(2).sum(dim=-1, keepdim=True)
qk = torch.matmul(q, k.transpose(-1, -2))
dist_sq = q_norm + k_norm.transpose(-1, -2) - 2 * qk
rbf_scores = torch.exp(-dist_sq / (2 * rbf_sigma**2))
return (1 - rbf_ratio) * dot_scores + rbf_ratio * rbf_scores
def forward(self, x: Tensor, xa: Tensor = None, mask: Tensor = None, enc = None, layer = None, feature_type="audio") -> tuple:
x = x.to(device, dtype)
if xa is not None:
xa = xa.to(device, dtype)
batch, ctx, dims = x.shape
scale = (self.dims // self.head) ** -0.25
z = default(xa, x).to(device, dtype)
q = self.q(x)
k = self.k(z)
v = self.v(z)
qlen = q.shape[1]
klen = k.shape[1]
if self.rotary_emb:
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
qlen = q.shape[2]
klen = k.shape[2]
q = self.rope.apply_rotary(q, (self.rope(qlen, enc=enc, layer=layer)))
k = self.rope.apply_rotary(k, (self.rope(klen, enc=enc, layer=layer)))
else:
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
batch, head, ctx, head_dim = q.shape
if self.rbf:
qk = self.enhanced_attention_scores(q * scale, k * scale, rbf_sigma=1.0, rbf_ratio=0.3)
qk = (q * scale) @ (k * scale).transpose(-1, -2)
if self.rope.use_pbias:
f0 = enc.get("f0", None) if enc is not None else None
pbias = self.rope.use_pbias(f0)
if pbias is not None:
qk = qk + pbias[:,:,:q.shape[2],:q.shape[2]]
token_ids = k[:, :, :, 0]
zscale = torch.ones_like(token_ids)
fzero = torch.clamp(F.softplus(self.fzero), self.minz, self.maxz)
zscale[token_ids.float() == self.pad_token] = fzero
if mask is not None:
mask = mask[:q.shape[2], :q.shape[2]]
qk = qk + mask.unsqueeze(0).unsqueeze(0) * zscale.unsqueeze(-2).expand(qk.shape)
qk = qk * zscale.unsqueeze(-2)
w = F.softmax(qk, dim=-1).to(q.dtype)
wv = (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2)
if "multihead" in self.debug and self._counter % 100 == 0:
print(f"MHA: q={q.shape}, k={k.shape}, v={v.shape} - {qk.shape}, wv shape: {wv.shape}")
self._counter += 1
return self.o(wv), qk.detach()
class t_gate(nn.Module):
def __init__(self, dims, num_types=4):
super().__init__()
self.gate_projections = nn.ModuleList([
nn.Sequential(Linear(dims, 1), nn.Sigmoid())
for _ in range(num_types)])
self.type_classifier = nn.Sequential(
Linear(dims, num_types),
nn.Softmax(dim=-1))
def forward(self, x):
type_probs = self.type_classifier(x)
gates = torch.stack([gate(x) for gate in self.gate_projections], dim=-1)
comb_gate = torch.sum(gates * type_probs.unsqueeze(2), dim=-1)
return comb_gate
class m_gate(nn.Module):
def __init__(self, dims, mem_size=64):
super().__init__()
self.m_key = nn.Parameter(torch.randn(mem_size, dims))
self.m_val = nn.Parameter(torch.randn(mem_size, 1))
self.gate_proj = nn.Sequential(Linear(dims, dims//2), nn.SiLU(), Linear(dims//2, 1))
def forward(self, x):
d_gate = torch.sigmoid(self.gate_proj(x))
attention = torch.matmul(x, self.m_key.transpose(0, 1))
attention = F.softmax(attention / math.sqrt(x.shape[-1]), dim=-1)
m_gate = torch.matmul(attention, self.m_val)
m_gate = torch.sigmoid(m_gate)
return 0.5 * (d_gate + m_gate)
class c_gate(nn.Module):
def __init__(self, dims):
super().__init__()
self.s_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
self.w_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
self.p_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
self.e_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
self.ph_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
self.integ = Linear(dims*5, dims)
def forward(self, x, features):
s_feat = features.get("spectrogram", x)
w_feat = features.get("waveform", x)
p_feat = features.get("pitch", x)
e_feat = features.get("envelope", x)
ph_feat = features.get("phase", x)
s = self.s_gate(x) * s_feat
w = self.w_gate(x) * w_feat
p = self.p_gate(x) * p_feat
e = self.e_gate(x) * e_feat
ph = self.ph_gate(x) * ph_feat
comb = torch.cat([s, w, p, e, ph], dim=-1)
return self.integ(comb)
class Residual(nn.Module):
_seen = set()
def __init__(self, ctx, dims, head, act, cross_attn=True, debug: List[str] = [],
tgate=True, mgate=False, cgate=False, mem_size=512, features=None):
super().__init__()
self.dims = dims
self.head = head
self.ctx = ctx
self.head_dim = dims // head
self.cross_attn = cross_attn
self.features = features
self.debug = debug
self._counter = 0
self.dropout = 0.01
self.t_gate = tgate
self.m_gate = mgate
self.c_gate = cgate
self.blend = nn.Parameter(torch.tensor(0.5))
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(),
"tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(),
"softplus": nn.Softplus(), "softshrink": nn.Softshrink(),
"leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
act_fn = act_map.get(act, nn.GELU())
self.attna = MultiheadA(dims, head, rotary_emb=True, debug=debug)
self.attnb = (MultiheadA(dims, head, rotary_emb=True, debug=debug) if cross_attn else None)
mlp = dims * 4
self.mlp = nn.Sequential(Linear(dims, mlp), act_fn, Linear(mlp, dims))
self.t_gate = t_gate(dims=dims, num_types=4) if t_gate else None
self.m_gate = m_gate(dims=dims, mem_size=mem_size) if m_gate else None
self.c_gate = c_gate(dims=dims) if cgate else None
self.lna = RMSNorm(dims)
self.lnb = RMSNorm(dims) if cross_attn else None
self.lnc = RMSNorm(dims)
if not any([t_gate, m_gate, c_gate]):
self.mlp_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
def forward(self, x, xa=None, mask=None, enc=None, layer=None, feature_type="audio") -> Tensor:
x = x.to(device, dtype)
if xa is not None:
xa = xa.to(device, dtype)
bln = self.blend
x = x + self.attna(self.lna(x), xa=None, mask=mask, enc=enc, layer=layer)[0]
if self.attnb and xa is not None:
c = self.attnb(self.lnb(x), xa=xa, mask=None, enc=enc, layer=layer)[0]
b = torch.sigmoid(bln)
x = b * x + (1 - b) * c
normx = self.lnc(x)
mlp_out = self.mlp(normx)
if self.t_gate:
gate = self.t_gate(normx)
x = x + gate * mlp_out
elif self.m_gate:
gate = self.m_gate(normx)
x = x + gate * mlp_out
elif self.c_gate:
gate_output = self.c_gate(normx, self.features)
x = x + gate_output
else:
if hasattr(self, 'mlp_gate'):
mlp_gate = self.mlp_gate(normx)
x = x + mlp_gate * mlp_out
else:
x = x + mlp_out
if "residual" in self.debug and self._counter % 100 == 0:
print(f"Step {self._counter}: Residual block output shape: {x.shape}, xa shape: {xa.shape if xa is not None else None}")
if self.t_gate:
print(f"Step {self._counter}: Using t_gate: {self.t_gate}")
elif self.m_gate:
print(f"Step {self._counter}: Using m_gate: {self.m_gate}")
elif self.c_gate:
print(f"Step {self._counter}: Using c_gate: {self.c_gate}")
else:
print(f"Step {self._counter}: Using MLP gate: {self.mlp_gate if hasattr(self, 'mlp_gate') else None}")
self._counter += 1
return x
class FEncoder(nn.Module):
def __init__(self, input_dims, dims, head, layer, kernel_size, act, stride=1, use_rope=False, spec_shape=None):
super().__init__()
self.head = head
self.head_dim = dims // head
self.dropout = 0.01
self.use_rope = use_rope
self.dims = dims
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
act_fn = act_map.get(act, nn.GELU())
self.encoder = nn.Sequential(
Conv1d(input_dims, dims, kernel_size=kernel_size, stride=stride, padding=kernel_size//2), act_fn,
Conv1d(dims, dims, kernel_size=5, padding=2), act_fn,
Conv1d(dims, dims, kernel_size=3, padding=1, groups=dims), act_fn)
if use_rope:
if spec_shape is not None:
self.rope = rotary(
dims=self.head_dim,
use_2d_axial=True,
spec_shape=spec_shape, debug=[])
else:
self.rope = rotary(
dims=self.head_dim,
use_2d_axial=False, debug=[])
else:
self.rope = None
self.positional = lambda length: sinusoids(length, dims)
self.norm = RMSNorm(dims)
self._norm = RMSNorm(dims)
def apply_rope_to_features(self, x, layer=None, feature_type="audio"):
if feature_type in ["envelope", "phase"]:
feature_type = "spectrogram"
batch, ctx, dims = x.shape
x = x.view(batch, ctx, self.head, self.head_dim).permute(0, 2, 1, 3)
if feature_type == "spectrogram" and hasattr(self.rope, 'use_2d_axial') and self.rope.use_2d_axial:
rope_freqs = self.rope(ctx, layer=layer, input_type="spectrogram")
else:
rope_freqs = self.rope(ctx, layer=layer, input_type="audio")
x = self.rope.apply_rotary(x, rope_freqs)
x = x.permute(0, 2, 1, 3).contiguous().view(batch, ctx, dims)
return x
def forward(self, x, enc=None, layer=None, feature_type="audio"):
x = self.encoder(x).permute(0, 2, 1)
if self.use_rope:
x = self.apply_rope_to_features(x, layer=layer, feature_type=feature_type)
else:
x = x + self.positional(x.shape[1]).to(x.device, x.dtype)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = self._norm(x)
return x
class WEncoder(nn.Module):
def __init__(self, input_dims, dims, head, layer, kernel_size, act, use_rope=False):
super().__init__()
self.head = head
self.head_dim = dims // head
self.dropout = 0.01
self.use_rope = use_rope
self.dims = dims
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
act_fn = act_map.get(act, nn.GELU())
self.downsample = nn.Sequential(
Conv1d(input_dims, dims//8, kernel_size=15, stride=8, padding=7), act_fn,
Conv1d(dims//8, dims//4, kernel_size=7, stride=4, padding=3), act_fn,
Conv1d(dims//4, dims, kernel_size=9, stride=5, padding=4), act_fn)
self.encoder = nn.Sequential(
Conv1d(dims, dims, kernel_size=3, padding=1, groups=dims//8), act_fn,
Conv1d(dims, dims, kernel_size=1), act_fn)
if use_rope:
self.rope = rotary(
dims=self.head_dim,
use_2d_axial=False,
theta=50.0, debug=[])
else:
self.rope = None
self.positional = lambda length: sinusoids(length, dims)
self.norm = RMSNorm(dims)
def apply_rope_to_features(self, x, layer=None):
if not self.use_rope or self.rope is None:
return x
batch, ctx, dims = x.shape
x = x.view(batch, ctx, self.head, self.head_dim).permute(0, 2, 1, 3)
rope_freqs = self.rope(ctx, layer=layer, input_type="waveform")
x = self.rope.apply_rotary(x, rope_freqs)
x = x.permute(0, 2, 1, 3).contiguous().view(batch, ctx, dims)
return x
def forward(self, x, enc=None, layer=None, feature_type="waveform"):
x = self.downsample(x)
x = self.encoder(x)
x = x.permute(0, 2, 1)
if self.use_rope:
x = self.apply_rope_to_features(x, layer=layer)
else:
x = x + self.positional(x.shape[1]).to(x.device, x.dtype)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
return self.norm(x)
class PEncoder(nn.Module):
def __init__(self, input_dims, dims, head, layer, kernel_size, act, use_rope=False):
super().__init__()
self.head = head
self.head_dim = dims // head
self.dropout = 0.01
self.use_rope = use_rope
self.dims = dims
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
act_fn = act_map.get(act, nn.GELU())
self.encoder = nn.Sequential(
Conv1d(input_dims, dims//4, kernel_size=7, stride=8, padding=3), act_fn,
Conv1d(dims//4, dims//2, kernel_size=5, stride=4, padding=2), act_fn,
Conv1d(dims//2, dims, kernel_size=5, stride=5, padding=2), act_fn)
if use_rope:
self.rope = rotary(
dims=self.head_dim,
use_2d_axial=False,
theta=100.0, debug=[])
else:
self.rope = None
self.positional = lambda length: sinusoids(length, dims)
self.norm = RMSNorm(dims)
def apply_rope_to_features(self, x, layer=None):
if not self.use_rope or self.rope is None:
return x
batch, ctx, dims = x.shape
x = x.view(batch, ctx, self.head, self.head_dim).permute(0, 2, 1, 3)
rope_freqs = self.rope(ctx, layer=layer, input_type="pitch")
x = self.rope.apply_rotary(x, rope_freqs)
x = x.permute(0, 2, 1, 3).contiguous().view(batch, ctx, dims)
return x
def forward(self, x, enc=None, layer=None, feature_type="pitch"):
x = self.encoder(x).permute(0, 2, 1)
if self.use_rope:
x = self.apply_rope_to_features(x, layer=layer)
else:
x = x + self.positional(x.shape[1]).to(x.device, x.dtype)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = self.norm(x)
return x
class AudioEncoder(nn.Module):
_seen = set()
def __init__(self, mels: int, ctx: int, dims: int, head: int, layer: int, debug: List[str], features: List[str], act: str = "gelu"):
super(AudioEncoder, self).__init__()
self.dims = dims
self.head = head
self.ctx = ctx
self.head_dim = dims // head
self.debug = debug
self._counter = 0
self.features = features
self.dropout = 0.01
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(),"tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
act_fn = act_map.get(act, nn.GELU())
if features == ["spectrogram", "waveform", "pitch"]:
cgate=True
else:
cgate = False
self.blocks = nn.ModuleDict({
"spectrogram": nn.ModuleList(
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)] if "spectrogram" in features else None
),
"waveform": nn.ModuleList(
[WEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=11, act=act_fn)] +
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)] if "waveform" in features else None
),
"pitch": nn.ModuleList(
[FEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=9, act=act, stride=2)] +
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)] if "pitch" in features else None
),
"envelope": nn.ModuleList(
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate)
for _ in range(layer)] if "envelope" in features else None
),
"phase": nn.ModuleList(
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate)
for _ in range(layer)] if "phase" in features else None
)
})
def forward(self, enc, layer="encoder"):
enc = dict_to(enc, device, dtype)
if self._counter < 1:
s = enc.get("spectrogram")
w = enc.get("waveform")
p = default(enc.get("pitch"), enc.get("f0"))
plot_waveform(x=s, w=w, p=p, hop_length=128)
out = {}
out.update(enc)
for f in self.features:
if f in enc and f in self.blocks:
x = enc[f]
for block in self.blocks[f]:
x = block(x, enc=enc, layer=layer)
out[f] = x
if "encoder" in self.debug and self._counter % 100 == 0:
names = list(x.keys())
shapes = {k: v.shape for k, v in x.items()}
print(f"Step {self._counter}: mode: {names}: shapes: {shapes}")
self._counter += 1
return out
class TextDecoder(nn.Module):
def __init__(self, vocab: int, ctx: int, dims: int, head: int, layer: int, cross_attn: bool,
debug: List[str], features: List[str], sequential=False):
super(TextDecoder, self).__init__()
self.ctx = ctx
self.dims = dims
self.head = head
self.head_dim = dims // head
self.debug = debug
self._counter = 0
self.dropout = 0.01
self.sequential = sequential
self.features = features
self.token = nn.Embedding(num_embeddings=vocab, embedding_dim=dims)
with torch.no_grad():
self.token.weight[0].zero_()
self.positional = nn.Parameter(data=torch.empty(ctx, dims), requires_grad=True)
self.block = nn.ModuleList([
Residual(ctx=ctx, dims=dims, head=head, act="gelu", cross_attn=cross_attn, debug=debug, features=features)
for _ in range(layer)])
self.blocks = nn.ModuleDict({
f: nn.ModuleList([Residual(ctx=ctx, dims=dims, head=head, act="gelu", cross_attn=cross_attn, debug=debug, features=features)
for _ in range(layer)]) for f in features})
self.blend = nn.ParameterDict({f: nn.Parameter(torch.tensor(0.5)) for f in features})
self.ln_dec = RMSNorm(dims)
mask = torch.tril(torch.ones(ctx, ctx), diagonal=0)
self.register_buffer("mask", mask, persistent=False)
def forward(self, x, enc, order=None, layer='decoder') -> Tensor:
enc = dict_to(enc, device, dtype)
x = x.to(device)
bln = self.blend
if order is None:
order = self.features
mask = self.mask[:x.shape[1], :x.shape[1]]
x = self.token(x) + self.positional[:x.shape[1]]
x = F.dropout(x, p=self.dropout, training=self.training)
for block in self.block:
x = block(x, xa=None, mask=mask, enc=enc, layer=layer)
for f in order:
if f in enc:
xa = enc[f]
for block in self.blocks[f]:
out = block(x=x, xa=xa, mask=None, enc=enc, layer=layer)
a = torch.sigmoid(bln[f])
x = a * out + (1 - a) * x
if "decoder" in self.debug and self._counter % 100 == 0:
print(f"Step {self._counter}: Decoder output shape: {x.shape}, enc keys: {list(enc.keys())}, order: {order}")
self._counter += 1
x = self.ln_dec(x)
return x @ torch.transpose(self.token.weight.to(dtype), 0, 1).float()
class Echo(nn.Module):
def __init__(self, param: Dimensions):
super().__init__()
self.param = param
self.count = 0
self.encoder = AudioEncoder(
mels=param.mels,
ctx=param.aud_ctx,
dims=param.aud_dims,
head=param.aud_head,
layer=param.aud_idx,
act=param.act,
debug=param.debug,
features=param.features,
)
self.decoder = TextDecoder(
vocab=param.vocab,
ctx=param.text_ctx,
dims=param.text_dims,
head=param.text_head,
layer=param.text_idx,
cross_attn=param.cross_attn,
debug=param.debug,
features=param.features,
)
all_head = torch.zeros(self.param.text_idx, self.param.text_head, dtype=torch.bool)
all_head[self.param.text_idx // 2 :] = True
self.register_buffer("alignment_head", all_head.to_sparse(), persistent=False)
def update_base(self, f0):
for name, module in self.encoder.named_modules():
if isinstance(module, (rotary)):
module.update_base(f0)
def set_alignment_head(self, dump: bytes):
array = np.frombuffer(
gzip.decompress(base64.b85decode(dump)), dtype=bool).copy()
mask = torch.from_numpy(array).reshape(
self.param.text_idx, self.param.text_head)
self.register_buffer("alignment_head", mask.to_sparse(), persistent=False)
def embed_audio(self, spectrogram: torch.Tensor):
return self.encoder(spectrogram)
def logits(self,input_ids: torch.Tensor, encoder_output: torch.Tensor):
return self.decoder(input_ids, encoder_output)
def forward(self,
decoder_input_ids=None,
labels=None,
waveform: Optional[torch.Tensor]=None,
input_ids=None,
spectrogram: torch.Tensor=None,
pitch: Optional[torch.Tensor]=None,
f0: Optional[torch.Tensor]=None,
f0d: Optional[torch.Tensor]=None,
envelope: Optional[torch.Tensor]=None,
phase: Optional[torch.Tensor]=None,
) -> Dict[str, torch.Tensor]:
decoder_input_ids = input_ids
encoder_inputs = {}
if spectrogram is not None:
encoder_inputs["spectrogram"] = spectrogram
if waveform is not None:
encoder_inputs["waveform"] = waveform
if pitch is not None:
encoder_inputs["pitch"] = pitch
if envelope is not None:
encoder_inputs["envelope"] = envelope
if phase is not None:
encoder_inputs["phase"] = phase
if f0 is not None:
encoder_inputs["f0"] = f0
if f0d is not None:
encoder_inputs["f0d"] = f0d
if f0 is not None:
f0 = f0.squeeze(0)
self.update_base(f0)
encoder_outputs = self.encoder(encoder_inputs)
logits = self.decoder(input_ids, encoder_outputs)
loss = None
if labels is not None:
loss = F.cross_entropy(
logits.view(-1, logits.shape[-1]), labels.view(-1), ignore_index=0)
self.count += 1
return {
"logits": logits,
"loss": loss,
"labels": labels,
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"encoder_output": encoder_outputs,
}
@property
def device(self):
return next(self.parameters()).device
@property
def dtype(self):
return next(self.parameters()).dtype
def _init_weights(self, module):
std = 0.02
self.init_counts = {
"Linear": 0, "Conv1d": 0, "LayerNorm": 0, "RMSNorm": 0,
"Conv2d": 0, "SEBlock": 0, "TextDecoder": 0, "AudioEncoder": 0,
"Residual": 0, "MultiheadA": 0, "MultiheadB - Cross Attention": 0,
"MultiheadC": 0, "MultiheadD": 0, "FEncoder": 0,
"WEncoder": 0, "PEncoder": 0}
for name, module in self.named_modules():
if isinstance(module, RMSNorm):
nn.init.ones_(module.weight)
self.init_counts["RMSNorm"] += 1
elif isinstance(module, nn.Linear):
if module.weight is not None:
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Linear"] += 1
elif isinstance(module, Conv1d):
nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Conv1d"] += 1
elif isinstance(module, Conv2d):
nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Conv2d"] += 1
elif isinstance(module, MultiheadA):
self.init_counts["MultiheadA"] += 1
elif isinstance(module, TextDecoder):
self.init_counts["TextDecoder"] += 1
elif isinstance(module, AudioEncoder):
self.init_counts["AudioEncoder"] += 1
elif isinstance(module, Residual):
self.init_counts["Residual"] += 1
def init_weights(self):
print("Initializing model weights...")
self.apply(self._init_weights)
print("Initialization summary:")
for module_type, count in self.init_counts.items():
if count > 0:
print(f"{module_type}: {count}")
def register_gradient_hooks(self):
for name, param in self.named_parameters():
if param.requires_grad:
if "encoder" in name:
param.register_hook(lambda grad, n=name: self._print_encoder_grad(n, grad))
elif "decoder" in name:
param.register_hook(lambda grad, n=name: self._print_decoder_grad(n, grad))
print("Gradient debugging hooks registered")
return self
def _print_encoder_grad(self, name, grad):
if grad is not None and self.count == 10:
norm = grad.median().item()
print(f"ENCODER GRAD: {name} = {norm:.6f}")
return None
def _print_decoder_grad(self, name, grad):
if grad is not None and self.count == 10:
norm = grad.median().item()
print(f"DECODER GRAD: {name} = {norm:.6f}")
return None
def reset_counter(self):
self._counter = 0
print("Counter reset to 0.")
metric = evaluate.load(path="wer")
def align_f0(f0, ctx):
ctx = torch.tensor(ctx)
bat, length = f0.shape
if length == ctx:
return f0
frames = length / ctx
idx = torch.arange(ctx, device=f0.device)
idx = (idx * frames).long()
batch_idx = torch.arange(bat, device=f0.device).unsqueeze(1)
return f0[batch_idx, idx.unsqueeze(0).expand(bat, -1)]
@dataclass
class DataCollator:
tokenizer: Any
def __call__(self, features: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]:
pad_token_id = tokenizer.pad_token_id if hasattr(tokenizer, 'pad_token_id') else 0
bos_token_id = tokenizer.bos_token_id if hasattr(tokenizer, 'bos_token_id') else 1
batch = {}
if "spectrogram" in features[0] and features[0]["spectrogram"] is not None:
spectrogram_list = [f["spectrogram"] for f in features]
max_len_feat = max(f.shape[-1] for f in spectrogram_list)
pad_spectrogram = []
for feat in spectrogram_list:
current_len = feat.shape[-1]
padding = max_len_feat - current_len
if padding > 0:
pad_feat = F.pad(feat, (0, padding), mode='constant', value=pad_token_id)
else:
pad_feat = feat
pad_spectrogram.append(pad_feat)
batch["spectrogram"] = torch.stack(pad_spectrogram)
if "waveform" in features[0] and features[0]["waveform"] is not None:
waveform_list = [f["waveform"] for f in features]
max_len_wav = max(w.shape[-1] for w in waveform_list)
pad_waveforms = []
for wav in waveform_list:
current_len = wav.shape[-1]
padding = max_len_wav - current_len
if padding > 0:
if wav.ndim == 1:
wav = wav.unsqueeze(0)
pad_wav = F.pad(wav, (0, padding), mode='constant', value=pad_token_id)
else:
pad_wav = wav
pad_waveforms.append(pad_wav)
batch["waveform"] = torch.stack(pad_waveforms)
if "label" in features[0] and features[0]["label"] is not None:
labels_list = [f["label"] for f in features]
max_len = max(len(l) for l in labels_list)
all_ids = []
all_labels = []
for label in labels_list:
label_list = label.tolist() if isinstance(label, torch.Tensor) else label
decoder_input = [bos_token_id] + label_list
label_eos = label_list + [pad_token_id]
input_len = max_len + 1 - len(decoder_input)
label_len = max_len + 1 - len(label_eos)
padded_input = decoder_input + [pad_token_id] * input_len
padded_labels = label_eos + [pad_token_id] * label_len
all_ids.append(padded_input)
all_labels.append(padded_labels)
batch["input_ids"] = torch.tensor(all_ids, dtype=torch.long)
batch["labels"] = torch.tensor(all_labels, dtype=torch.long)
if "pitch" in features[0] and features[0]["pitch"] is not None:
pitch_list = [f["pitch"] for f in features]
max_len_pitch = max(e.shape[-1] for e in pitch_list)
pad_pitch = []
for pitch in pitch_list:
current_len = pitch.shape[-1]
padding = max_len_pitch - current_len
if padding > 0:
pad_pitch_item = F.pad(pitch, (0, padding), mode='constant', value=pad_token_id)
else:
pad_pitch_item = pitch
pad_pitch.append(pad_pitch_item)
batch["pitch"] = torch.stack(pad_pitch)
if "f0" in features[0] and features[0]["f0"] is not None:
f0_list = [f["f0"] for f in features]
max_len_f0 = max(f.shape[-1] for f in f0_list)
pad_f0 = []
for f0 in f0_list:
current_len = f0.shape[-1]
padding = max_len_f0 - current_len
if padding > 0:
pad_f0_item = F.pad(f0, (0, padding), mode='constant', value=pad_token_id)
else:
pad_f0_item = f0
pad_f0.append(pad_f0_item)
batch["f0"] = torch.stack(pad_f0)
if "envelope" in features[0] and features[0]["envelope"] is not None:
env_list = [f["envelope"] for f in features]
max_len = max(f.shape[-1] for f in env_list)
pad_env = []
for feat in env_list:
current_len = feat.shape[-1]
padding = max_len - current_len
if padding > 0:
pad_feat = F.pad(feat, (0, padding), mode='constant', value=pad_token_id)
else:
pad_feat = feat
pad_env.append(pad_feat)
batch["envelope"] = torch.stack(pad_env)
if "phase" in features[0] and features[0]["phase"] is not None:
ph_list = [f["phase"] for f in features]
max_len = max(f.shape[-1] for f in ph_list)
pad_ph = []
for feat in ph_list:
current_len = feat.shape[-1]
padding = max_len - current_len
if padding > 0:
pad_feat = F.pad(feat, (0, padding), mode='constant', value=pad_token_id)
else:
pad_feat = feat
pad_ph.append(pad_feat)
batch["phase"] = torch.stack(pad_ph)
return batch
def hilbert_transform(x):
N = x.shape[-1]
xf = torch.fft.rfft(x)
h = torch.zeros(N // 2 + 1, device=x.device, dtype=x.dtype)
if N % 2 == 0:
h[0] = h[N//2] = 1
h[1:N//2] = 2
else:
h[0] = 1
h[1:(N+1)//2] = 2
return torch.fft.irfft(xf * h, n=N)
def analytic_signal(x):
return x + 1j * hilbert_transform(x)
def hilbert_transform_2d(x, dim=-1):
N = x.shape[dim]
if dim == -1 or dim == len(x.shape) - 1:
xf = torch.fft.rfft(x)
else:
xf = torch.fft.rfft(x, dim=dim)
h_shape = [1] * len(x.shape)
h_shape[dim] = N // 2 + 1
h = torch.zeros(h_shape, device=x.device, dtype=x.dtype)
if dim == -1 or dim == len(x.shape) - 1:
if N % 2 == 0:
h[..., 0] = h[..., -1] = 1
h[..., 1:-1] = 2
else:
h[..., 0] = 1
h[..., 1:] = 2
else:
pass
return torch.fft.irfft(xf * h, n=N, dim=dim)
def hilbert_transform_true_2d(x):
xf = torch.fft.rfft2(x)
h1, h2 = torch.meshgrid(
torch.fft.rfftfreq(x.shape[-2]) * 2 - 1,
torch.fft.rfftfreq(x.shape[-1]) * 2 - 1,
indexing='ij')
h = -1j / (math.pi * (h1 + 1j*h2))
h[0, 0] = 0
return torch.fft.irfft2(xf * h.to(x.device))
def process_spectrogram_with_hilbert(spec):
analytic = spec + 1j * hilbert_transform(spec)
envelope = torch.abs(analytic)
phase = torch.angle(analytic)
return envelope, phase
def load_wave(wave_data, sample_rate):
if isinstance(wave_data, str):
waveform, sr = torchaudio.load(uri=wave_data, normalize=False)
elif isinstance(wave_data, dict):
waveform = torch.tensor(data=wave_data["array"]).float()
sr = wave_data["sampling_rate"]
else:
raise TypeError("Invalid wave_data format.")
if waveform.dim() == 1:
waveform = waveform.unsqueeze(0)
if sr != sample_rate:
original_length = waveform.shape[1]
target_length = int(original_length * (sample_rate / sr))
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=sample_rate)
waveform = resampler(waveform)
return waveform.flatten()
def extract_features(batch, tokenizer, spectrogram, waveforms, pitch, frequency=False,
hop_length=128, fmin=0, fmax=8000, n_mels=128, n_fft=1024, sampling_rate=16000,
pad_mode="constant", center=True, power=2.0, window_fn=torch.hann_window, mel_scale="htk",
norm=None, normalized=False, downsamples=False, period=False, hilbert=False):
dtype = torch.float32
device = torch.device("cuda:0")
audio = batch["audio"]
sampling_rate = audio["sampling_rate"]
sr = audio["sampling_rate"]
wav = load_wave(wave_data=audio, sample_rate=sr)
if spectrogram:
transform = torchaudio.transforms.MelSpectrogram(
f_max=fmax,
f_min=fmin,
n_mels=n_mels,
sample_rate=sr,
n_fft=n_fft,
hop_length=hop_length,
norm=norm,
normalized=normalized,
power=power,
center=center,
mel_scale=mel_scale,
window_fn=window_fn,
pad_mode=pad_mode)
mel_spectrogram = transform(wav)
log_mel = torch.clamp(mel_spectrogram, min=1e-10).log10()
log_mel = torch.maximum(log_mel, log_mel.max() - 8.0)
spec = (log_mel + 4.0) / 4.0
spec = torch.tensor(spec)
batch["spectrogram"] = spec
if hilbert:
envelope_list = []
phase_list = []
for ch_idx in range(spec.shape[0]):
envelope, phase = process_spectrogram_with_hilbert(spec[ch_idx])
envelope_list.append(envelope)
phase_list.append(phase)
batch["envelope"] = torch.stack(envelope_list)
batch["phase"] = torch.stack(phase_list)
wav_1d = wav.unsqueeze(0)
if waveforms:
batch["waveform"] = wav_1d
if pitch:
wav_np = wav.numpy().astype(np.float64)
f0, t = pw.dio(wav_np, sampling_rate,
frame_period=hop_length/sampling_rate*1000)
f0 = pw.stonemask(wav_np, f0, t, sampling_rate)
f0 = torch.from_numpy(f0).float()
batch["pitch"] = f0
if frequency:
wav_np = wav.numpy().astype(np.float64)
f0, t = pw.dio(wav_np, sampling_rate, frame_period=hop_length/sampling_rate*1000)
f0 = pw.stonemask(wav_np, f0, t, sampling_rate)
f0 = torch.from_numpy(f0).float()
batch["f0"] = f0
if spectrogram and waveforms and pitch:
spec_mean = batch["spectrogram"].mean()
spec_std = batch["spectrogram"].std() + 1e-6
batch["spectrogram"] = (batch["spectrogram"] - spec_mean) / spec_std
wav_mean = batch["waveform"].mean()
wav_std = batch["waveform"].std() + 1e-6
batch["waveform"] = (batch["waveform"] - wav_mean) / wav_std
if batch["pitch"].max() > 1.0:
pitch_min = 50.0
pitch_max = 500.0
batch["pitch"] = (batch["pitch"] - pitch_min) / (pitch_max - pitch_min)
batch["label"] = tokenizer.encode(batch["transcription"], add_special_tokens=False)
return batch
def compute_metrics(eval_pred, compute_result: bool = True,
print_pred: bool = False, num_samples: int = 0, tokenizer=None, pitch=None, model=None):
pred_logits = eval_pred.predictions
label_ids = eval_pred.label_ids
if hasattr(pred_logits, "cpu"):
pred_logits = pred_logits.cpu()
if hasattr(label_ids, "cpu"):
label_ids = label_ids.cpu()
if isinstance(pred_logits, tuple):
pred_ids = pred_logits[0]
else:
pred_ids = pred_logits
if hasattr(pred_ids, "ndim") and pred_ids.ndim == 3:
if not isinstance(pred_ids, torch.Tensor):
pred_ids = torch.tensor(pred_ids)
pred_ids = pred_ids.argmax(dim=-1)
pred_ids = pred_ids.tolist()
if hasattr(label_ids, "tolist"):
label_ids = label_ids.tolist()
label_ids = [[0 if token == -100 else token for token in seq] for seq in label_ids]
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=False)
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=False)
if print_pred:
for i in range(min(num_samples, len(pred_str))):
print(f"Preds: {pred_str[i]}")
print(f"Label: {label_str[i]}")
print(f"preds: {pred_ids[i]}")
print(f"label: {label_ids[i]}")
print("--------------------------------")
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
wer = 100 * metric.compute(predictions=pred_str, references=label_str)
if model is None:
global global_model
if 'global_model' in globals():
model = global_model
if model is not None:
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) / 1_000_000
if trainable_params > 0:
efficiency_score = (100 - wer) / trainable_params
else:
print("Warning: Zero trainable parameters detected")
efficiency_score = 0.0
else:
print("Warning: Model not available for parameter counting")
trainable_params = 0.0
efficiency_score = 0.0
if hasattr(wer, "item"):
wer = wer.item()
metrics = {
"wer": float(wer),
"trainable_params_M": float(trainable_params),
"efficiency_score": float(efficiency_score),
}
return metrics
logger = logging.getLogger(__name__)
def create_model(param: Dimensions) -> Echo:
model = Echo(param).to('cuda')
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
total_params = sum(p.numel() for p in model.parameters())
logger.info(f"Trainable parameters: {trainable_params:,}")
logger.info(f"Total parameters: {total_params:,}")
print(f"Trainable parameters: {trainable_params:,}")
print(f"Total parameters: {total_params:,}")
return model
def setup_tokenizer(token: str, local_tokenizer_path: str = "D:/newmodel/model/tokenn/"):
from tokenizers import Tokenizer
tokenizer = Tokenizer.from_file(f"{local_tokenizer_path}/tokenizer.json")
orig_encode = tokenizer.encode
def enc(text, add_special_tokens=True):
ids = orig_encode(text).ids
if not add_special_tokens:
sp_ids = [tokenizer.token_to_id(t) for t in ["<PAD>", "<BOS>", "<EOS>"]]
ids = [id for id in ids if id not in sp_ids]
return ids
def bdec(ids_list, skip_special_tokens=True):
results = []
for ids in ids_list:
if skip_special_tokens:
ids = [id for id in ids if id not in [0, 1, 2]]
results.append(tokenizer.decode(ids))
return results
def save_pretrained(save_dir):
os.makedirs(save_dir, exist_ok=True)
tokenizer.save(f"{save_dir}/tokenizer.json")
tokenizer.encode = enc
tokenizer.batch_decode = bdec
tokenizer.save_pretrained = save_pretrained
tokenizer.pad_token_id = 0
tokenizer.bos_token_id = 1
tokenizer.eos_token_id = 2
return tokenizer
def prepare_datasets(tokenizer, token: str, sanity_check: bool = False, dataset_config: Optional[Dict] = None) -> Tuple[any, any]:
if dataset_config is None:
dataset_config = {
"spectrogram": True,
"waveforms": True,
"pitch": True,
"frequency": True,
"downsamples": True,
"hop_length": 128,
"fmin": 50,
"fmax": 2000,
"n_mels": 128,
"n_fft": 1024,
"sampling_rate": 16000,
}
dataset = load_dataset(
"google/fleurs",
"en_us",
token=token,
trust_remote_code=True,
streaming=False)
dataset = dataset.cast_column(column="audio", feature=Audio(sampling_rate=16000)).select_columns(["audio", "transcription"])
if sanity_check:
dataset = dataset["test"].take(10)
dataset = dataset.select_columns(["audio", "transcription"])
logger.info(f"Sanity dataset size: {dataset.num_rows}")
print(f"Sanity dataset size: {dataset.num_rows}")
prepare_fn = partial(extract_features, tokenizer=tokenizer, **dataset_config)
dataset = dataset.map(
function=prepare_fn,
remove_columns=["audio", "transcription"]
).with_format(type="torch")
train_dataset = dataset
test_dataset = dataset
else:
def filter_func(x):
return (0 < len(x["transcription"]) < 512 and
len(x["audio"]["array"]) > 0 and
len(x["audio"]["array"]) < 1500 * 160)
dataset = dataset.filter(filter_func).shuffle(seed=4)
logger.info(f"Dataset size: {dataset['train'].num_rows}, {dataset['test'].num_rows}")
print(f"Dataset size: {dataset['train'].num_rows}, {dataset['test'].num_rows}")
prepare_fn = partial(extract_features, tokenizer=tokenizer, **dataset_config)
columns_to_remove = list(next(iter(dataset.values())).features)
train_dataset = dataset["train"]
test_dataset = dataset["test"].take(50)
logger.info(f"Train dataset size: {train_dataset.num_rows}, Test dataset size: {test_dataset.num_rows}")
train_dataset = train_dataset.map(
function=prepare_fn,
remove_columns=columns_to_remove
).with_format(type="torch")
test_dataset = test_dataset.map(
function=prepare_fn,
remove_columns=columns_to_remove
).with_format(type="torch")
return train_dataset, test_dataset
def get_training_args(
log_dir: str,
batch_eval_metrics: bool = False,
max_steps: int = 10,
save_steps: int = 1000,
eval_steps: int = 1,
warmup_steps: int = 0,
num_train_epochs: int = 1,
logging_steps: int = 1,
eval_on_start: bool = False,
learning_rate: float = 1e-4,
weight_decay: float = 0.01,
max_grad_norm: float = 1.0,
) -> Seq2SeqTrainingArguments:
return Seq2SeqTrainingArguments(
output_dir=log_dir,
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
gradient_accumulation_steps=1,
eval_accumulation_steps=1,
eval_strategy="steps",
save_strategy="steps",
max_steps=max_steps,
save_steps=save_steps,
eval_steps=eval_steps,
warmup_steps=warmup_steps,
num_train_epochs=num_train_epochs,
logging_steps=logging_steps,
logging_dir=log_dir,
logging_strategy="steps",
report_to=["tensorboard"],
push_to_hub=False,
disable_tqdm=False,
save_total_limit=1,
label_names=["labels"],
optim="adamw_torch",
lr_scheduler_type="cosine",
learning_rate=learning_rate,
weight_decay=weight_decay,
save_safetensors=False,
eval_on_start=eval_on_start,
batch_eval_metrics=batch_eval_metrics,
max_grad_norm=max_grad_norm,
)
def main():
token = ""
log_dir = os.path.join('./output/logs', datetime.now().strftime(format='%m-%d_%H_%M_%S'))
os.makedirs(name=log_dir, exist_ok=True)
tokenizer = setup_tokenizer(token)
def sanity(sanity: bool):
if sanity:
training_args = get_training_args(
log_dir,
batch_eval_metrics = False,
max_steps = 10,
save_steps = 0,
eval_steps = 1,
warmup_steps = 0,
logging_steps = 1,
eval_on_start = False,
learning_rate = 5e-6,
weight_decay = 0.01,
)
else:
training_args = get_training_args(
log_dir,
batch_eval_metrics = False,
max_steps = 1000,
save_steps = 1005,
eval_steps = 100,
warmup_steps = 100,
logging_steps = 10,
eval_on_start = False,
learning_rate = 2.5e-4,
weight_decay = 0.01,
)
return training_args
param = Dimensions(
mels=128,
aud_ctx=1500,
aud_head=4,
aud_dims=512,
aud_idx=4,
vocab=40000,
text_ctx=512,
text_head=4,
text_dims=512,
text_idx=4,
act="swish",
debug={"rotary"},
cross_attn=True,
features = ["spectrogram"]
)
sanity_check = False
training_args = sanity(sanity_check)
dataset_config = {
"spectrogram": True,
"waveforms": False,
"pitch": False,
"downsamples": False,
"frequency": False,
"hilbert": False,
"hop_length": 128,
"fmin": 150,
"fmax": 2000,
"n_mels": 128,
"n_fft": 1024,
"sampling_rate": 16000,
"pad_mode": "constant",
"center": True,
"power": 2.0,
"window_fn": torch.hann_window,
"mel_scale": "htk",
"norm": None,
"normalized": False}
model = create_model(param)
global global_model
global_model = model
metrics_fn = partial(compute_metrics, print_pred=False, num_samples=5,
tokenizer=tokenizer, model=model)
print(f"{'Sanity check' if sanity_check else 'Training'} mode")
train_dataset, test_dataset = prepare_datasets(
tokenizer=tokenizer,
token=token,
sanity_check=sanity_check,
dataset_config=dataset_config)
trainer = Seq2SeqTrainer(
args=training_args,
model=model,
train_dataset=train_dataset,
eval_dataset=test_dataset,
data_collator=DataCollator(tokenizer=tokenizer),
compute_metrics=metrics_fn,
)
model.init_weights()
trainer.train()
if __name__ == "__main__":
main()
from tensorboard import program
log_dir = "./output/logs"
tb = program.TensorBoard()
tb.configure(argv=[None, '--logdir', log_dir])
url = tb.launch()
print(f"TensorBoard started at {url}")