Update README.md
Browse files
README.md
CHANGED
@@ -20,7 +20,6 @@ tags:
|
|
20 |
- new
|
21 |
|
22 |
---
|
23 |
-
----
|
24 |
NLPASR multimodal modal with f0 modulated relative positional embeddings.
|
25 |
For researchtesting.
|
26 |
|
@@ -32,15 +31,13 @@ Questions:
|
|
32 |
-Can we incorporate acoustic information directly into positional encodings?
|
33 |
|
34 |
-Does pitch-conditioning improve speech recognition?
|
35 |
-
|
36 |
-
|
37 |
---
|
38 |
|
39 |
|
40 |
|
41 |
<img width="780" alt="cc5" src="https:github.comuser-attachmentsassets106ebe75-f1db-4f85-bdae-818b114fedd2" >
|
42 |
|
43 |
-
This plot illustrates the pattern similiarity of pitch waveform and spectrogram. librispeech - clean.
|
44 |
|
45 |
To explore the relationship between pitch and rotary embeddings, the model implements three complementary pitch based enhancements:
|
46 |
|
@@ -74,15 +71,11 @@ if f0 is not None:
|
|
74 |
else:
|
75 |
theta = self.theta
|
76 |
|
77 |
-
## In text, theta=10,000 sets the base frequency for positional encoding, ensuring a wide range of periodicities for long sequences. I'm not sure if the specific number 10k was experimentally derived.
|
78 |
-
## For audio, especially speech, the relevant periodicities are determined by the pitch f0 neighborhood or f0 per frame might be more meaningful.
|
79 |
|
80 |
freqs = theta.unsqueeze-1 220.0 * 700 *
|
81 |
torch.pow10, torch.linspace0, 2595 * torch.log10torch.tensor1 + 8000700,
|
82 |
self.dim 2, device=theta.device, dtype=theta.dtype 2595 - 1 1000
|
83 |
|
84 |
-
## This seems to give better results compared to the standard freqs = 1. theta torch.arange0, dim, 2[:dim 2].float dim.
|
85 |
-
## I thought a mel-scale version might be more perceptually meaningful for audio.. ie. using mel-scale to create a perceptually-relevant distance metric instead of Euclidean distance.
|
86 |
|
87 |
t = torch.arangectx, device=device, dtype=dtype
|
88 |
freqs = t[:, None] * freqs # dont repeat or use some other method here
|
@@ -245,19 +238,19 @@ The Complex Frequency Result:
|
|
245 |
[Freqs] torch.Size[454, 64] 2.17+1.17j
|
246 |
|
247 |
|
|
|
248 |
Magnitude: sqrt2.17Β² + 1.17Β² β 2.5
|
249 |
Phase: atan21.17, 2.17 β 0.49 radians
|
250 |
|
251 |
Variable radius: Each frame has different magnitude
|
252 |
|
253 |
|
|
|
254 |
Silence frames: radius β 0 β freqs β 0
|
255 |
Voiced frames: radius β 200-300 β freqs β 2-3
|
256 |
|
257 |
Variable attention: Important frames get more attention
|
258 |
|
259 |
-
|
260 |
-
|
261 |
Silence: No acoustic prominence β low radius
|
262 |
Speech: High acoustic prominence β high radius
|
263 |
Transitions: Natural pitch changes
|
@@ -288,6 +281,11 @@ Approximation methods like using cossin projections or fixed rotation matrices t
|
|
288 |
```
|
289 |
This approach respects both the rotation phase and the scaling radius for each tokenhead, so the rotary embedding is applied when the radius varies.
|
290 |
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
----
|
293 |
|
@@ -295,4 +293,819 @@ This model sometimes uses :
|
|
295 |
|
296 |
https:github.comsine2piMaxfactor
|
297 |
|
298 |
-
MaxFactor is a custom PyTorch optimizer with adaptive learning rates and specialized handling for matrix parameters.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
- new
|
21 |
|
22 |
---
|
|
|
23 |
NLPASR multimodal modal with f0 modulated relative positional embeddings.
|
24 |
For researchtesting.
|
25 |
|
|
|
31 |
-Can we incorporate acoustic information directly into positional encodings?
|
32 |
|
33 |
-Does pitch-conditioning improve speech recognition?
|
34 |
+
|
|
|
35 |
---
|
36 |
|
37 |
|
38 |
|
39 |
<img width="780" alt="cc5" src="https:github.comuser-attachmentsassets106ebe75-f1db-4f85-bdae-818b114fedd2" >
|
40 |
|
|
|
41 |
|
42 |
To explore the relationship between pitch and rotary embeddings, the model implements three complementary pitch based enhancements:
|
43 |
|
|
|
71 |
else:
|
72 |
theta = self.theta
|
73 |
|
|
|
|
|
74 |
|
75 |
freqs = theta.unsqueeze-1 220.0 * 700 *
|
76 |
torch.pow10, torch.linspace0, 2595 * torch.log10torch.tensor1 + 8000700,
|
77 |
self.dim 2, device=theta.device, dtype=theta.dtype 2595 - 1 1000
|
78 |
|
|
|
|
|
79 |
|
80 |
t = torch.arangectx, device=device, dtype=dtype
|
81 |
freqs = t[:, None] * freqs # dont repeat or use some other method here
|
|
|
238 |
[Freqs] torch.Size[454, 64] 2.17+1.17j
|
239 |
|
240 |
|
241 |
+
|
242 |
Magnitude: sqrt2.17Β² + 1.17Β² β 2.5
|
243 |
Phase: atan21.17, 2.17 β 0.49 radians
|
244 |
|
245 |
Variable radius: Each frame has different magnitude
|
246 |
|
247 |
|
248 |
+
|
249 |
Silence frames: radius β 0 β freqs β 0
|
250 |
Voiced frames: radius β 200-300 β freqs β 2-3
|
251 |
|
252 |
Variable attention: Important frames get more attention
|
253 |
|
|
|
|
|
254 |
Silence: No acoustic prominence β low radius
|
255 |
Speech: High acoustic prominence β high radius
|
256 |
Transitions: Natural pitch changes
|
|
|
281 |
```
|
282 |
This approach respects both the rotation phase and the scaling radius for each tokenhead, so the rotary embedding is applied when the radius varies.
|
283 |
|
284 |
+
<img width="780" alt="cc4" src="https:github.comuser-attachmentsassets165a3f18-659a-4e2e-a154-a3456b667bae" >
|
285 |
+
|
286 |
+
|
287 |
+
----
|
288 |
+
[https:huggingface.coSin2piEcho17tensorboard?params=scalars](https://huggingface.co/Sin2pi/Echo3/tensorboard?params=scalars)
|
289 |
|
290 |
----
|
291 |
|
|
|
293 |
|
294 |
https:github.comsine2piMaxfactor
|
295 |
|
296 |
+
MaxFactor is a custom PyTorch optimizer with adaptive learning rates and specialized handling for matrix parameters.
|
297 |
+
|
298 |
+
** this model deviates in a lot of ways from standard transformer models.
|
299 |
+
|
300 |
+
|
301 |
+
```python
|
302 |
+
import os
|
303 |
+
import math
|
304 |
+
import warnings
|
305 |
+
import logging
|
306 |
+
from itertools import chain
|
307 |
+
import torch
|
308 |
+
import torch.nn.functional as F
|
309 |
+
from torch import nn, Tensor
|
310 |
+
from tensordict import TensorDict
|
311 |
+
from typing import Optional, Dict, Union, List, Tuple
|
312 |
+
import numpy as np
|
313 |
+
from functools import partial
|
314 |
+
from datetime import datetime
|
315 |
+
from tensordict import TensorDict
|
316 |
+
from transformers.trainer_seq2seq import Seq2SeqTrainer
|
317 |
+
from transformers.training_args_seq2seq import Seq2SeqTrainingArguments
|
318 |
+
from echoutils import *
|
319 |
+
|
320 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
321 |
+
dtype = torch.float32
|
322 |
+
warnings.filterwarnings("ignore")
|
323 |
+
logging.basicConfig(level=logging.ERROR)
|
324 |
+
|
325 |
+
class rotary(nn.Module):
|
326 |
+
def __init__(self, dims, head, max_ctx=1500, radii=False, debug: List[str] = [], use_pbias=False, axial=False, spec_shape=None):
|
327 |
+
|
328 |
+
super(rotary, self).__init__()
|
329 |
+
self.use_pbias = use_pbias
|
330 |
+
self.dims = dims
|
331 |
+
self.head = head
|
332 |
+
self.head_dim = dims // head
|
333 |
+
self.radii = radii
|
334 |
+
self.debug = debug
|
335 |
+
self.counter = 0
|
336 |
+
self.last_theta = None
|
337 |
+
self.axial = axial
|
338 |
+
|
339 |
+
self.bias = nn.Parameter(torch.zeros(max_ctx, dims // 2), requires_grad=True if use_pbias else False)
|
340 |
+
theta = (torch.tensor(10000, device=device, dtype=dtype))
|
341 |
+
self.theta = nn.Parameter(theta, requires_grad=True)
|
342 |
+
self.theta_values = []
|
343 |
+
|
344 |
+
if axial and spec_shape is not None:
|
345 |
+
time_frames, freq_bins = spec_shape
|
346 |
+
self.time_frames = time_frames
|
347 |
+
self.freq_bins = freq_bins
|
348 |
+
|
349 |
+
time_theta = 50.0
|
350 |
+
time_freqs = 1.0 / (time_theta ** (torch.arange(0, dims, 4)[:(dims // 4)].float() / dims))
|
351 |
+
self.register_buffer('time_freqs', time_freqs)
|
352 |
+
|
353 |
+
freq_theta = 100.0
|
354 |
+
freq_freqs = 1.0 / (freq_theta ** (torch.arange(0, dims, 4)[:(dims // 4)].float() / dims))
|
355 |
+
self.register_buffer('freq_freqs', freq_freqs)
|
356 |
+
|
357 |
+
def pitch_bias(self, f0):
|
358 |
+
if f0 is None:
|
359 |
+
return None
|
360 |
+
f0_flat = f0.squeeze().float()
|
361 |
+
f0_norm = (f0_flat - f0_flat.mean()) / (f0_flat.std() + 1e-8)
|
362 |
+
f0_sim = torch.exp(-torch.cdist(f0_norm.unsqueeze(1),
|
363 |
+
f0_norm.unsqueeze(1)))
|
364 |
+
return f0_sim.unsqueeze(0).unsqueeze(0)
|
365 |
+
|
366 |
+
def theta_freqs(self, theta):
|
367 |
+
if theta.dim() == 0:
|
368 |
+
theta = theta.unsqueeze(0)
|
369 |
+
freq = (theta.unsqueeze(-1) / 220.0) * 700 * (
|
370 |
+
torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 8000/700)),
|
371 |
+
self.head_dim // 2, device=theta.device, dtype=theta.dtype) / 2595) - 1) / 1000
|
372 |
+
return freq
|
373 |
+
|
374 |
+
def _apply_radii(self, freqs, f0, ctx):
|
375 |
+
if self.radii and f0 is not None:
|
376 |
+
radius = f0.to(device, dtype)
|
377 |
+
L = radius.shape[0]
|
378 |
+
if L != ctx:
|
379 |
+
F = L / ctx
|
380 |
+
idx = torch.arange(ctx, device=f0.device)
|
381 |
+
idx = (idx * F).long().clamp(0, L - 1)
|
382 |
+
radius = radius[idx]
|
383 |
+
return torch.polar(radius.unsqueeze(-1), freqs), radius
|
384 |
+
else:
|
385 |
+
return torch.polar(radius.unsqueeze(-1), freqs), radius
|
386 |
+
else:
|
387 |
+
return torch.polar(torch.ones_like(freqs), freqs), None
|
388 |
+
|
389 |
+
def check_f0(self, f0, f0t, ctx):
|
390 |
+
if f0 is not None and f0.shape[1] == ctx:
|
391 |
+
return f0
|
392 |
+
elif f0t is not None and f0t.shape[1] == ctx:
|
393 |
+
return f0t
|
394 |
+
else:
|
395 |
+
return None
|
396 |
+
|
397 |
+
def axial_freqs(self, ctx):
|
398 |
+
if not self.axial:
|
399 |
+
return None
|
400 |
+
time_frames = self.time_frames
|
401 |
+
freq_bins = self.freq_bins
|
402 |
+
|
403 |
+
t = torch.arange(ctx, device=device, dtype=dtype)
|
404 |
+
t_x = (t % time_frames).float()
|
405 |
+
t_y = torch.div(t, time_frames, rounding_mode='floor').float()
|
406 |
+
freqs_x = torch.outer(t_x, self.time_freqs)
|
407 |
+
freqs_y = torch.outer(t_y, self.freq_freqs)
|
408 |
+
freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
|
409 |
+
freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
|
410 |
+
return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
|
411 |
+
|
412 |
+
def forward(self, x=None, en=None, f=None, layer=None) -> Tensor:
|
413 |
+
ctx=x
|
414 |
+
f0 = en.get("f0") if en is not None else None
|
415 |
+
f0t = en.get("f0t") if en is not None else None
|
416 |
+
|
417 |
+
f0 = self.check_f0(f0, f0t, ctx)
|
418 |
+
if f0 is not None:
|
419 |
+
if f0.dim() == 2:
|
420 |
+
f0 = f0.squeeze(0)
|
421 |
+
theta = f0 + self.theta
|
422 |
+
else:
|
423 |
+
theta = self.theta
|
424 |
+
freqs = self.theta_freqs(theta)
|
425 |
+
t = torch.arange(ctx, device=device, dtype=dtype)
|
426 |
+
freqs = t[:, None] * freqs
|
427 |
+
freqs, radius = self._apply_radii(freqs, f0, ctx)
|
428 |
+
|
429 |
+
if self.axial and f == "spectrogram":
|
430 |
+
freqs_2d = self.axial_freqs(ctx)
|
431 |
+
if freqs_2d is not None:
|
432 |
+
return freqs_2d.unsqueeze(0)
|
433 |
+
|
434 |
+
if "radius" in self.debug and self.counter == 10:
|
435 |
+
print(f" [{layer}] [Radius] {radius.shape if radius is not None else None} {radius.mean() if radius is not None else None} [Theta] {theta.mean() if theta is not None else None} [f0] {f0.shape if f0 is not None else None} [Freqs] {freqs.shape} {freqs.mean():.2f} [ctx] {ctx}")
|
436 |
+
self.counter += 1
|
437 |
+
return freqs.unsqueeze(0)
|
438 |
+
|
439 |
+
@staticmethod
|
440 |
+
def apply_rotary(x, freqs):
|
441 |
+
x1 = x[..., :freqs.shape[-1]*2]
|
442 |
+
x2 = x[..., freqs.shape[-1]*2:]
|
443 |
+
orig_shape = x1.shape
|
444 |
+
if x1.ndim == 2:
|
445 |
+
x1 = x1.unsqueeze(0)
|
446 |
+
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
|
447 |
+
x1 = torch.view_as_complex(x1) * freqs
|
448 |
+
x1 = torch.view_as_real(x1).flatten(-2)
|
449 |
+
x1 = x1.view(orig_shape)
|
450 |
+
return torch.cat([x1.type_as(x), x2], dim=-1)
|
451 |
+
|
452 |
+
class MultiheadA(nn.Module):
|
453 |
+
|
454 |
+
rbf = False
|
455 |
+
def __init__(self, dims: int, head: int, rotary_emb: bool = True,
|
456 |
+
zero_val: float = 1e-7, minz: float = 1e-8, maxz: float = 1e-6, debug: List[str] = [], optim_attn=False, use_pbias=False):
|
457 |
+
super(MultiheadA, self).__init__()
|
458 |
+
|
459 |
+
self.dims = dims
|
460 |
+
self.head = head
|
461 |
+
self.head_dim = dims // head
|
462 |
+
self.debug = debug
|
463 |
+
self.counter = 0
|
464 |
+
self.use_pbias = use_pbias
|
465 |
+
|
466 |
+
self.q = nn.Linear(dims, dims).to(device, dtype)
|
467 |
+
self.k = nn.Linear(dims, dims, bias=False).to(device, dtype)
|
468 |
+
self.v = nn.Linear(dims, dims).to(device, dtype)
|
469 |
+
self.o = nn.Linear(dims, dims).to(device, dtype)
|
470 |
+
|
471 |
+
self.pad_token = 0
|
472 |
+
self.rotary_emb = rotary_emb
|
473 |
+
self.minz = minz
|
474 |
+
self.maxz = maxz
|
475 |
+
self.zero_val = zero_val
|
476 |
+
self.optim_attn = optim_attn
|
477 |
+
self.fzero = nn.Parameter(torch.tensor(zero_val, device=device, dtype=dtype), requires_grad=False)
|
478 |
+
|
479 |
+
if rotary_emb:
|
480 |
+
self.rope = rotary(
|
481 |
+
dims=dims,
|
482 |
+
head=head,
|
483 |
+
debug=debug,
|
484 |
+
radii=False,
|
485 |
+
)
|
486 |
+
else:
|
487 |
+
self.rope = None
|
488 |
+
|
489 |
+
def cos_sim(self, q: Tensor, k: Tensor, v: Tensor, mask) -> Tensor:
|
490 |
+
q_norm = torch.nn.functional.normalize(q, dim=-1, eps=1e-12)
|
491 |
+
k_norm = torch.nn.functional.normalize(k, dim=-1, eps=1e-12)
|
492 |
+
qk_cosine = torch.matmul(q_norm, k_norm.transpose(-1, -2))
|
493 |
+
qk_cosine = qk_cosine + mask
|
494 |
+
weights = F.softmax(qk_cosine, dim=-1)
|
495 |
+
out = torch.matmul(weights, v)
|
496 |
+
return out
|
497 |
+
|
498 |
+
def rbf_scores(self, q, k, rbf_sigma=1.0, rbf_ratio=0.0):
|
499 |
+
scale = (self.dims // self.head) ** -0.25
|
500 |
+
dot_scores = torch.matmul(q, k.transpose(-1, -2)) * scale
|
501 |
+
if rbf_ratio <= 0.0:
|
502 |
+
return dot_scores
|
503 |
+
q_norm = q.pow(2).sum(dim=-1, keepdim=True)
|
504 |
+
k_norm = k.pow(2).sum(dim=-1, keepdim=True)
|
505 |
+
qk = torch.matmul(q, k.transpose(-1, -2))
|
506 |
+
dist_sq = q_norm + k_norm.transpose(-1, -2) - 2 * qk
|
507 |
+
rbf_scores = torch.exp(-dist_sq / (2 * rbf_sigma**2))
|
508 |
+
return (1 - rbf_ratio) * dot_scores + rbf_ratio * rbf_scores
|
509 |
+
|
510 |
+
def forward(self, x: Tensor, xa = None, mask = None, en= None, layer = None, f=None) -> tuple:
|
511 |
+
|
512 |
+
x = x.to(device, dtype)
|
513 |
+
if xa is not None:
|
514 |
+
xa = xa.to(device, dtype)
|
515 |
+
scale = (self.dims // self.head) ** -0.25
|
516 |
+
|
517 |
+
z = default(xa, x).to(device, dtype)
|
518 |
+
q = self.q(x)
|
519 |
+
k = self.k(z)
|
520 |
+
v = self.v(z)
|
521 |
+
|
522 |
+
if self.rotary_emb:
|
523 |
+
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
524 |
+
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
525 |
+
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
526 |
+
q2 = q.shape[2]
|
527 |
+
k2 = k.shape[2]
|
528 |
+
|
529 |
+
q = self.rope.apply_rotary(q, (self.rope(x=q2, en=en, f=f, layer=layer)))
|
530 |
+
k = self.rope.apply_rotary(k, (self.rope(x=k2, en=en, f=f, layer=layer)))
|
531 |
+
else:
|
532 |
+
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
533 |
+
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
534 |
+
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
535 |
+
|
536 |
+
qk = (q * scale) @ (k * scale).transpose(-1, -2)
|
537 |
+
|
538 |
+
if self.rbf:
|
539 |
+
qk = self.rbf_scores(q * scale, k * scale, rbf_sigma=1.0, rbf_ratio=0.3)
|
540 |
+
if self.use_pbias:
|
541 |
+
pbias = self.rope.pitch_bias(f0 = en.get("f0", None) if en is not None else None)
|
542 |
+
if pbias is not None:
|
543 |
+
qk = qk + pbias[:,:,:q2,:q2]
|
544 |
+
|
545 |
+
token_ids = k[:, :, :, 0]
|
546 |
+
zscale = torch.ones_like(token_ids)
|
547 |
+
fzero = torch.clamp(F.softplus(self.fzero), self.minz, self.maxz)
|
548 |
+
zscale[token_ids.float() == self.pad_token] = fzero
|
549 |
+
|
550 |
+
if mask is not None:
|
551 |
+
if mask.dim() == 4:
|
552 |
+
mask = mask[0, 0]
|
553 |
+
mask = mask[:q2, :k2] if xa is not None else mask[:q2, :q2]
|
554 |
+
qk = qk + mask * zscale.unsqueeze(-2).expand(qk.shape)
|
555 |
+
|
556 |
+
qk = qk * zscale.unsqueeze(-2)
|
557 |
+
w = F.softmax(qk, dim=-1).to(q.dtype)
|
558 |
+
wv = (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2)
|
559 |
+
|
560 |
+
if "multihead" in self.debug and self.counter % 100 == 0:
|
561 |
+
print(f"MHA: q={q.shape}, k={k.shape}, v={v.shape} - {qk.shape}, wv shape: {wv.shape}")
|
562 |
+
self.counter += 1
|
563 |
+
return self.o(wv), qk
|
564 |
+
|
565 |
+
@staticmethod
|
566 |
+
def split(X: Tensor) -> (Tensor, Tensor):
|
567 |
+
half_dim = X.shape[-1] // 2
|
568 |
+
return X[..., :half_dim], X[..., half_dim:]
|
569 |
+
|
570 |
+
class t_gate(nn.Module):
|
571 |
+
def __init__(self, dims, num_types=4, enabled=True):
|
572 |
+
super().__init__()
|
573 |
+
self.enabled = enabled
|
574 |
+
self.gate_projections = nn.ModuleList([
|
575 |
+
nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
576 |
+
for _ in range(num_types)])
|
577 |
+
self.type_classifier = nn.Sequential(
|
578 |
+
Linear(dims, num_types),
|
579 |
+
nn.Softmax(dim=-1))
|
580 |
+
def forward(self, x):
|
581 |
+
if not self.enabled:
|
582 |
+
return None
|
583 |
+
type_probs = self.type_classifier(x)
|
584 |
+
gates = torch.stack([gate(x) for gate in self.gate_projections], dim=-1)
|
585 |
+
comb_gate = torch.sum(gates * type_probs.unsqueeze(2), dim=-1)
|
586 |
+
return comb_gate
|
587 |
+
|
588 |
+
class m_gate(nn.Module):
|
589 |
+
def __init__(self, dims, mem_size=64, enabled=True):
|
590 |
+
super().__init__()
|
591 |
+
self.enabled = enabled
|
592 |
+
if enabled:
|
593 |
+
self.m_key = nn.Parameter(torch.randn(mem_size, dims))
|
594 |
+
self.m_val = nn.Parameter(torch.randn(mem_size, 1))
|
595 |
+
self.gate_proj = nn.Sequential(Linear(dims, dims//2), nn.SiLU(), Linear(dims//2, 1))
|
596 |
+
|
597 |
+
def forward(self, x):
|
598 |
+
if not self.enabled:
|
599 |
+
return None
|
600 |
+
d_gate = torch.sigmoid(self.gate_proj(x))
|
601 |
+
attention = torch.matmul(x, self.m_key.transpose(0, 1))
|
602 |
+
attention = F.softmax(attention / math.sqrt(x.shape[-1]), dim=-1)
|
603 |
+
m_gate = torch.matmul(attention, self.m_val)
|
604 |
+
m_gate = torch.sigmoid(m_gate)
|
605 |
+
return 0.5 * (d_gate + m_gate)
|
606 |
+
|
607 |
+
class c_gate(nn.Module):
|
608 |
+
def __init__(self, dims, enabled=True):
|
609 |
+
super().__init__()
|
610 |
+
self.enabled = enabled
|
611 |
+
if enabled:
|
612 |
+
self.s_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
613 |
+
self.w_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
614 |
+
self.p_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
615 |
+
self.e_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
616 |
+
self.ph_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
617 |
+
self.integ = Linear(dims*5, dims)
|
618 |
+
|
619 |
+
def forward(self, x, features):
|
620 |
+
if not self.enabled:
|
621 |
+
return None
|
622 |
+
s_feat = features.get("spectrogram", x)
|
623 |
+
w_feat = features.get("waveform", x)
|
624 |
+
p_feat = features.get("pitch", x)
|
625 |
+
e_feat = features.get("envelope", x)
|
626 |
+
ph_feat = features.get("phase", x)
|
627 |
+
s = self.s_gate(x) * s_feat
|
628 |
+
w = self.w_gate(x) * w_feat
|
629 |
+
p = self.p_gate(x) * p_feat
|
630 |
+
e = self.e_gate(x) * e_feat
|
631 |
+
ph = self.ph_gate(x) * ph_feat
|
632 |
+
comb = torch.cat([s, w, p, e, ph], dim=-1)
|
633 |
+
return self.integ(comb)
|
634 |
+
|
635 |
+
class mlp_gate(nn.Module):
|
636 |
+
def __init__(self, dims, head, enabled=True, one_shot=True):
|
637 |
+
super().__init__()
|
638 |
+
self.enabled = enabled
|
639 |
+
if enabled:
|
640 |
+
self.gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
641 |
+
|
642 |
+
def forward(self, x, xa=None, f=None):
|
643 |
+
if not self.enabled:
|
644 |
+
return None
|
645 |
+
return self.gate(x)
|
646 |
+
|
647 |
+
class Residual(nn.Module):
|
648 |
+
_seen = set()
|
649 |
+
def __init__(self, ctx, dims, head, act, debug: List[str] = [],
|
650 |
+
tgate=True, mgate=False, cgate=False, mem_size=512, features=None, one_shot=False):
|
651 |
+
super().__init__()
|
652 |
+
|
653 |
+
self.dims = dims
|
654 |
+
self.head = head
|
655 |
+
self.ctx = ctx
|
656 |
+
self.head_dim = dims // head
|
657 |
+
self.features = features
|
658 |
+
self.debug = debug
|
659 |
+
self.counter = 0
|
660 |
+
self.dropout = 0.01
|
661 |
+
self.one_shot = one_shot
|
662 |
+
|
663 |
+
self.blend = nn.Parameter(torch.tensor(0.5))
|
664 |
+
act_fn = get_activation(act)
|
665 |
+
self.attn = MultiheadA(dims, head, rotary_emb=True, debug=debug)
|
666 |
+
self.curiosity = curiosity(dims, head)
|
667 |
+
|
668 |
+
if not any([tgate, mgate, cgate]):
|
669 |
+
self.mlp_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
670 |
+
else:
|
671 |
+
self.mlp_gate = None
|
672 |
+
|
673 |
+
mlp = dims * 4
|
674 |
+
self.mlp = nn.Sequential(Linear(dims, mlp), act_fn, Linear(mlp, dims))
|
675 |
+
|
676 |
+
self.t_gate = t_gate(dims=dims, num_types=4*2, enabled=tgate)
|
677 |
+
self.m_gate = m_gate(dims=dims, mem_size=mem_size, enabled=mgate)
|
678 |
+
self.c_gate = c_gate(dims=dims, enabled=cgate)
|
679 |
+
self.mlp_gate = mlp_gate(dims=dims, head=head, enabled=not any([tgate, mgate, cgate]), one_shot=True)
|
680 |
+
|
681 |
+
self.lna = RMSNorm(dims)
|
682 |
+
self.lnb = RMSNorm(dims)
|
683 |
+
self.lnc = RMSNorm(dims)
|
684 |
+
|
685 |
+
def forward(self, x, xa=None, mask=None, en=None, layer=None, f=None) -> Tensor:
|
686 |
+
|
687 |
+
b = torch.sigmoid(self.blend)
|
688 |
+
ax = x + self.attn(self.lna(x), xa=xa, mask=mask, en=en, layer=layer, f=f)[0]
|
689 |
+
bx = b * ax + (1 - b) * x
|
690 |
+
cx = self.lnb(bx)
|
691 |
+
dx = self.mlp(cx)
|
692 |
+
ex = self.t_gate(cx) if not None else self.default(self.m_gate(cx), self.mlp_gate(cx))
|
693 |
+
fx = x + ex + dx
|
694 |
+
gx = self.lnc(fx)
|
695 |
+
return gx
|
696 |
+
|
697 |
+
class OneShot(nn.Module):
|
698 |
+
def __init__(self, dims: int, head: int, scale: float = 0.3):
|
699 |
+
super().__init__()
|
700 |
+
self.head = head
|
701 |
+
self.hdim = dims // head
|
702 |
+
self.scale = scale
|
703 |
+
self.q_proj = Linear(dims, dims)
|
704 |
+
self.k_proj = Linear(dims, dims)
|
705 |
+
|
706 |
+
def forward(self, x: Tensor, guide: Tensor, f=None) -> Tensor | None:
|
707 |
+
B, Q, _ = x.shape
|
708 |
+
K = guide.size(1)
|
709 |
+
q = self.q_proj(x ).view(B, Q, self.head, self.hdim).transpose(1,2)
|
710 |
+
k = self.k_proj(guide).view(B, K, self.head, self.hdim).transpose(1,2)
|
711 |
+
bias = (q @ k.transpose(-1, -2)) * self.scale / math.sqrt(self.hdim)
|
712 |
+
return bias
|
713 |
+
|
714 |
+
class curiosity(nn.Module):
|
715 |
+
def __init__(self, d, h, bias=True):
|
716 |
+
super().__init__()
|
717 |
+
self.h = h
|
718 |
+
self.dh = d // h
|
719 |
+
self.qkv = nn.Linear(d, d * 3, bias=bias)
|
720 |
+
self.qkv_aux = nn.Linear(d, d * 3, bias=bias)
|
721 |
+
self.o = nn.Linear(d, d, bias=bias)
|
722 |
+
self.g = nn.Parameter(torch.zeros(h))
|
723 |
+
|
724 |
+
def split(self, x):
|
725 |
+
b, t, _ = x.shape
|
726 |
+
return x.view(b, t, self.h, self.dh).transpose(1, 2)
|
727 |
+
|
728 |
+
def merge(self, x):
|
729 |
+
b, h, t, dh = x.shape
|
730 |
+
return x.transpose(1, 2).contiguous().view(b, t, h * dh)
|
731 |
+
|
732 |
+
def forward(self, x, xa, mask=None):
|
733 |
+
q, k, v = self.qkv(x).chunk(3, -1)
|
734 |
+
qa, ka, va = self.qkv_aux(xa).chunk(3, -1)
|
735 |
+
q, k, v = map(self.split, (q, k, v))
|
736 |
+
qa, ka, va = map(self.split, (qa, ka, va))
|
737 |
+
dots = (q @ k.transpose(-2, -1)) / self.dh**0.5
|
738 |
+
dots_aux = (q @ ka.transpose(-2, -1)) / self.dh**0.5
|
739 |
+
if mask is not None: dots = dots.masked_fill(mask, -9e15)
|
740 |
+
p = dots.softmax(-1)
|
741 |
+
pa = dots_aux.softmax(-1)
|
742 |
+
h_main = p @ v
|
743 |
+
h_aux = pa @ va
|
744 |
+
g = torch.sigmoid(self.g).view(1, -1, 1, 1)
|
745 |
+
out = self.merge(h_main * (1 - g) + h_aux * g)
|
746 |
+
return self.o(out)
|
747 |
+
|
748 |
+
class PositionalEncoding(nn.Module):
|
749 |
+
def __init__(self, dims, ctx):
|
750 |
+
super(PositionalEncoding, self).__init__()
|
751 |
+
self.dims = dims
|
752 |
+
self.ctx = ctx
|
753 |
+
self.pe = self.get_positional_encoding(max_ctx=ctx)
|
754 |
+
|
755 |
+
def get_positional_encoding(self, max_ctx):
|
756 |
+
pe = torch.zeros(max_ctx, self.dims)
|
757 |
+
position = torch.arange(0, max_ctx, dtype=torch.float32).unsqueeze(1)
|
758 |
+
div_term = torch.exp(
|
759 |
+
torch.arange(0, self.dims, 2, dtype=torch.float32)
|
760 |
+
* (-math.log(10000.0) / self.dims)
|
761 |
+
)
|
762 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
763 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
764 |
+
pe = pe.unsqueeze(0)
|
765 |
+
return pe.to(device)
|
766 |
+
|
767 |
+
def forward(self, x):
|
768 |
+
ctx = x.size(1)
|
769 |
+
pe = self.pe[:, :ctx, :]
|
770 |
+
x = x * math.sqrt(self.dims)
|
771 |
+
x = x + pe
|
772 |
+
return x
|
773 |
+
|
774 |
+
class FEncoder(nn.Module):
|
775 |
+
def __init__(self, mels, dims, head, layer, kernel_size, act, stride=1, use_rope=False, spec_shape=None, debug=[]):
|
776 |
+
super().__init__()
|
777 |
+
|
778 |
+
self.head = head
|
779 |
+
self.head_dim = dims // head
|
780 |
+
self.dropout = 0.01
|
781 |
+
self.use_rope = use_rope
|
782 |
+
self.dims = dims
|
783 |
+
self.debug = debug
|
784 |
+
act_fn = get_activation(act)
|
785 |
+
self.attend_pitch = False
|
786 |
+
|
787 |
+
if self.attend_pitch:
|
788 |
+
self.q, self.k, self.v, self.o, self.scale = qkv_init(dims, head)
|
789 |
+
self.mlp = nn.Sequential(
|
790 |
+
nn.Linear(dims, dims),
|
791 |
+
nn.ReLU(),
|
792 |
+
nn.Linear(dims, dims),
|
793 |
+
)
|
794 |
+
else:
|
795 |
+
self.q, self.k, self.v, self.o, self.scale = None, None, None, None, None
|
796 |
+
self.mlp = None
|
797 |
+
|
798 |
+
self.encoder = nn.Sequential(
|
799 |
+
Conv1d(mels, dims, kernel_size=3, stride=1, padding=1), act_fn,
|
800 |
+
Conv1d(dims, dims, kernel_size=3, stride=1, padding=1), act_fn,
|
801 |
+
Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims), act_fn)
|
802 |
+
|
803 |
+
if use_rope:
|
804 |
+
if spec_shape is not None:
|
805 |
+
self.rope = rotary(dims=dims, head=head, radii=False, debug=[], use_pbias=False, axial=False, spec_shape=spec_shape)
|
806 |
+
else:
|
807 |
+
self.rope = None
|
808 |
+
self.positional = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)
|
809 |
+
self.norm = RMSNorm(dims)
|
810 |
+
|
811 |
+
def apply_rope_to_features(self, x, en=None, f=None, layer="audio"):
|
812 |
+
batch, ctx, dims = x.shape
|
813 |
+
x = x.view(batch, ctx, self.head, self.head_dim).permute(0, 2, 1, 3)
|
814 |
+
freqs = self.rope(ctx, en=en, f=f, layer=layer)
|
815 |
+
x = self.rope.apply_rotary(x, freqs)
|
816 |
+
x = x.permute(0, 2, 1, 3).contiguous().view(batch, ctx, dims)
|
817 |
+
|
818 |
+
return x
|
819 |
+
|
820 |
+
def forward(self, x: Tensor, en=None, f=None, layer = None):
|
821 |
+
x = self.encoder(x).permute(0, 2, 1)
|
822 |
+
if self.use_rope:
|
823 |
+
x = self.apply_rope_to_features(x, en=en, f=f, layer=layer)
|
824 |
+
else:
|
825 |
+
x = x + self.positional(x.shape[1], x.shape[-1], 10000).to(device, dtype)
|
826 |
+
|
827 |
+
if self.mlp is not None:
|
828 |
+
x = self.mlp(x)
|
829 |
+
|
830 |
+
if self.attend_pitch:
|
831 |
+
xa = en["input_ids"]
|
832 |
+
if xa is not None:
|
833 |
+
q, k, v = create_qkv(self.q, self.k, self.v, x=xa, xa=x, head=self.head)
|
834 |
+
out, _ = calculate_attention(q, k, v, mask=None, temperature=1.0, is_causal=True)
|
835 |
+
out = self.o(out)
|
836 |
+
x = x + out
|
837 |
+
|
838 |
+
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
839 |
+
x = self.norm(x)
|
840 |
+
return x
|
841 |
+
|
842 |
+
class WEncoder(nn.Module):
|
843 |
+
def __init__(self, input_dims, dims, head, layer, kernel_size, act, use_rope=False, debug=[], spec_shape=None):
|
844 |
+
super().__init__()
|
845 |
+
|
846 |
+
self.head = head
|
847 |
+
self.head_dim = dims // head
|
848 |
+
self.dropout = 0.01
|
849 |
+
self.use_rope = use_rope
|
850 |
+
self.dims = dims
|
851 |
+
self.debug = debug
|
852 |
+
act_fn = get_activation(act)
|
853 |
+
self.target_length = None
|
854 |
+
self.encoder = nn.Sequential(
|
855 |
+
Conv1d(input_dims, dims//4, kernel_size=15, stride=4, padding=7), act_fn,
|
856 |
+
Conv1d(dims//4, dims//2, kernel_size=7, stride=2, padding=3), act_fn,
|
857 |
+
Conv1d(dims//2, dims, kernel_size=5, stride=2, padding=2), act_fn)
|
858 |
+
|
859 |
+
if use_rope:
|
860 |
+
if spec_shape is not None:
|
861 |
+
self.rope = rotary(dims=dims, head=head, radii=False, debug=[], use_pbias=False, axial=False, spec_shape=spec_shape)
|
862 |
+
else:
|
863 |
+
self.rope = None
|
864 |
+
self.positional = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)
|
865 |
+
self.norm = RMSNorm(dims)
|
866 |
+
|
867 |
+
def apply_rope_to_features(self, x, en=None, f=None, layer="audio"):
|
868 |
+
batch, ctx, dims = x.shape
|
869 |
+
x = x.view(batch, ctx, self.head, self.head_dim).permute(0, 2, 1, 3)
|
870 |
+
freqs = self.rope(ctx, en=en, f=f, layer=layer)
|
871 |
+
x = self.rope.apply_rotary(x, freqs)
|
872 |
+
x = x.permute(0, 2, 1, 3).contiguous().view(batch, ctx, dims)
|
873 |
+
return x
|
874 |
+
|
875 |
+
def forward(self, x: Tensor, en= None, f=None, layer = None):
|
876 |
+
x = self.encoder(x).permute(0, 2, 1)
|
877 |
+
if self.target_length and x.shape[1] != self.target_length:
|
878 |
+
x = F.adaptive_avg_pool1d(x.transpose(1, 2), self.target_length).transpose(1, 2)
|
879 |
+
if self.use_rope:
|
880 |
+
x = self.apply_rope_to_features(x, en=en, f=f, layer=layer)
|
881 |
+
else:
|
882 |
+
x = x + self.positional(x.shape[1], x.shape[-1], 10000).to(device, dtype)
|
883 |
+
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
884 |
+
|
885 |
+
x = self.ln(x)
|
886 |
+
print(f"X: {x.shape} {f}") if "encoder" in self.debug else None
|
887 |
+
return self.norm(x)
|
888 |
+
|
889 |
+
class PEncoder(nn.Module):
|
890 |
+
def __init__(self, input_dims, dims, head, layer, kernel_size, act, use_rope=True, debug=[], one_shot=False, spec_shape=None):
|
891 |
+
super().__init__()
|
892 |
+
|
893 |
+
self.head = head
|
894 |
+
self.head_dim = dims // head
|
895 |
+
self.dims = dims
|
896 |
+
self.dropout = 0.01
|
897 |
+
self.use_rope = use_rope
|
898 |
+
self.debug = debug
|
899 |
+
act_fn = get_activation(act)
|
900 |
+
|
901 |
+
self.encoder = nn.Sequential(
|
902 |
+
Conv1d(input_dims, dims, kernel_size=7, stride=1, padding=3), act_fn,
|
903 |
+
Conv1d(dims, dims, kernel_size=5, stride=1, padding=2), act_fn,
|
904 |
+
Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims), act_fn)
|
905 |
+
|
906 |
+
if use_rope:
|
907 |
+
self.rope = rotary(dims=dims, head=head, radii=False, debug=[], use_pbias=False, axial=False, spec_shape=spec_shape)
|
908 |
+
else:
|
909 |
+
self.rope = None
|
910 |
+
self.positional = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)
|
911 |
+
|
912 |
+
self.norm = RMSNorm(dims)
|
913 |
+
|
914 |
+
def rope_to_feature(self, x, en=None, f="pitch", layer="PEncoder"):
|
915 |
+
batch, ctx, dims = x.shape
|
916 |
+
x = x.view(batch, ctx, self.head, self.head_dim).permute(0, 2, 1, 3)
|
917 |
+
freqs = self.rope(ctx, en=en, f=f, layer=layer)
|
918 |
+
x = self.rope.apply_rotary(x, freqs)
|
919 |
+
x = x.permute(0, 2, 1, 3).contiguous().view(batch, ctx, dims)
|
920 |
+
return x
|
921 |
+
|
922 |
+
def forward(self, x: Tensor, en= None, f="pitch", layer="PEncoder"):
|
923 |
+
|
924 |
+
if x.dim() == 2:
|
925 |
+
x = x.unsqueeze(0)
|
926 |
+
|
927 |
+
x = self.encoder(x).permute(0, 2, 1)
|
928 |
+
if self.use_rope:
|
929 |
+
x = self.rope_to_feature(x, en=en, f=f, layer=layer)
|
930 |
+
else:
|
931 |
+
x = x + self.positional(x.shape[1], x.shape[-1], 10000).to(device, dtype)
|
932 |
+
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
933 |
+
x = self.norm(x)
|
934 |
+
print(f"X: {x.shape} {f}") if "PEncoder" in self.debug else None
|
935 |
+
return x
|
936 |
+
|
937 |
+
class theBridge(nn.Module):
|
938 |
+
def __init__(self, vocab: int, mels: int, ctx: int, dims: int, head: int, layer: int,
|
939 |
+
debug: List[str], features: List[str], act: str = "gelu"):
|
940 |
+
super(theBridge, self).__init__()
|
941 |
+
|
942 |
+
tgate = True
|
943 |
+
mgate = False
|
944 |
+
cgate = False
|
945 |
+
|
946 |
+
self.debug = debug
|
947 |
+
self.counter = 0
|
948 |
+
self.dropout = 0.01
|
949 |
+
self.features = features
|
950 |
+
self.do_blend = "no_blend" not in self.debug
|
951 |
+
self.sequential = "sequential" in self.debug
|
952 |
+
self.layer = layer
|
953 |
+
|
954 |
+
self.token = nn.Embedding(vocab, dims, device=device, dtype=dtype)
|
955 |
+
self.positional = nn.Parameter(torch.empty(ctx, dims, device=device, dtype=dtype), requires_grad=True)
|
956 |
+
self.blend = nn.Parameter(torch.tensor(0.5, device=device, dtype=dtype), requires_grad=True)
|
957 |
+
self.norm = RMSNorm(dims)
|
958 |
+
self.sinusoid_pos = lambda length, dims, max_tscale: sinusoids(length, dims, 10000)
|
959 |
+
self.rotary = rotary(dims=dims, head=head, debug=debug, radii=False)
|
960 |
+
|
961 |
+
with torch.no_grad():
|
962 |
+
self.token.weight[0].zero_()
|
963 |
+
|
964 |
+
act_fn = get_activation(act)
|
965 |
+
if features == ["spectrogram", "waveform", "pitch"]:
|
966 |
+
cgate=True
|
967 |
+
else:
|
968 |
+
cgate = False
|
969 |
+
|
970 |
+
self.blockA = nn.ModuleDict()
|
971 |
+
self.blockA["waveform"] = nn.ModuleList(
|
972 |
+
[WEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=11, act=act_fn)] +
|
973 |
+
[Residual(ctx=ctx, dims=dims, head=head, act=act_fn, tgate=tgate, mgate=mgate, cgate=cgate, debug=debug, features=features)
|
974 |
+
for _ in range(layer)] if "waveform" in features else None)
|
975 |
+
|
976 |
+
for feature_type in ["spectrogram", "aperiodic", "harmonic"]:
|
977 |
+
if feature_type in features:
|
978 |
+
self.blockA[feature_type] = nn.ModuleList(
|
979 |
+
[FEncoder(mels=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
|
980 |
+
[Residual(ctx=ctx, dims=dims, head=head, act=act_fn, tgate=tgate, mgate=mgate, cgate=cgate, debug=debug, features=features) for _ in range(layer)] if feature_type in features else None)
|
981 |
+
else:
|
982 |
+
self.blockA[feature_type] = None
|
983 |
+
|
984 |
+
for feature_type in ["pitch", "phase"]:
|
985 |
+
if feature_type in features:
|
986 |
+
self.blockA[feature_type] = nn.ModuleList(
|
987 |
+
[PEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=9, act=act_fn)] +
|
988 |
+
[Residual(ctx=ctx, dims=dims, head=head, act=act_fn, tgate=tgate, mgate=mgate, cgate=cgate, debug=debug, features=features) for _ in range(layer)] if feature_type in features else None)
|
989 |
+
else:
|
990 |
+
self.blockA[feature_type] = None
|
991 |
+
|
992 |
+
self.blockB = nn.ModuleList([
|
993 |
+
Residual(ctx=ctx, dims=dims, head=head, act=act_fn, tgate=tgate, mgate=mgate, cgate=cgate, debug=debug, features=features)
|
994 |
+
for _ in range(layer)])
|
995 |
+
|
996 |
+
self.modal = nn.ModuleList([
|
997 |
+
Residual(ctx=ctx, dims=dims, head=head, act=act_fn, tgate=tgate, mgate=mgate, cgate=cgate, debug=debug, features=features)
|
998 |
+
for _ in range(layer)])
|
999 |
+
|
1000 |
+
mask = torch.tril(torch.ones(ctx, ctx), diagonal=0)
|
1001 |
+
self.register_buffer("mask", mask, persistent=False)
|
1002 |
+
|
1003 |
+
self.norm = RMSNorm(dims)
|
1004 |
+
|
1005 |
+
def forward(self, x, xa, en, f, sequential=False) -> Tensor:
|
1006 |
+
mask = self.mask[:x.shape[1], :x.shape[1]]
|
1007 |
+
x = self.token(x.long()) + self.positional[:x.shape[1]]
|
1008 |
+
|
1009 |
+
out = {}
|
1010 |
+
out["input_ids"] = x
|
1011 |
+
out.update(en)
|
1012 |
+
|
1013 |
+
for b in chain(self.blockA[f] or []):
|
1014 |
+
xa = b(x=xa, en=out, f=f, layer="en")
|
1015 |
+
|
1016 |
+
for b in chain(self.blockB or []):
|
1017 |
+
x = b(x=x, xa=None, mask=mask, en=out, f=f, layer="dec")
|
1018 |
+
y = b(x, xa=xa, mask=None, en=out, f=f, layer="cross")
|
1019 |
+
if sequential:
|
1020 |
+
x = y
|
1021 |
+
else:
|
1022 |
+
a = torch.sigmoid(self.blend)
|
1023 |
+
x = a * y + (1 - a) * x
|
1024 |
+
for b in self.modal:
|
1025 |
+
xc = b(x=torch.cat([x, xa], dim=1), xa=None, mask=None, en=out, f=f, layer="modal")
|
1026 |
+
xm = b(x=xc[:, :x.shape[1]], xa=xc[:, x.shape[1]:], mask=None, en=out, f=f, layer="modal")
|
1027 |
+
if sequential:
|
1028 |
+
x = xm
|
1029 |
+
else:
|
1030 |
+
a = torch.sigmoid(self.blend)
|
1031 |
+
x = a * x + (1 - a) * xm
|
1032 |
+
|
1033 |
+
if self.counter < 1 and "encoder" in self.debug:
|
1034 |
+
shapes = {k: v.shape for k, v in en.items()}
|
1035 |
+
print(f"Step {self.counter}: mode: {list(en.keys()) }: shapes: {shapes}")
|
1036 |
+
self.counter += 1
|
1037 |
+
|
1038 |
+
x = self.norm(x)
|
1039 |
+
x = x @ torch.transpose(self.token.weight.to(dtype), 0, 1).float()
|
1040 |
+
|
1041 |
+
return x
|
1042 |
+
|
1043 |
+
class Echo(nn.Module):
|
1044 |
+
def __init__(self, param: Dimensions):
|
1045 |
+
super().__init__()
|
1046 |
+
self.param = param
|
1047 |
+
|
1048 |
+
self.processor = theBridge(
|
1049 |
+
vocab=param.vocab,
|
1050 |
+
mels=param.mels,
|
1051 |
+
ctx=param.ctx,
|
1052 |
+
dims=param.dims,
|
1053 |
+
head=param.head,
|
1054 |
+
layer=param.layer,
|
1055 |
+
features=param.features,
|
1056 |
+
act=param.act,
|
1057 |
+
debug=param.debug,
|
1058 |
+
)
|
1059 |
+
|
1060 |
+
def forward(self,
|
1061 |
+
labels=None,
|
1062 |
+
input_ids=None,
|
1063 |
+
waveform: Optional[torch.Tensor]=None,
|
1064 |
+
spectrogram: Optional[torch.Tensor]=None,
|
1065 |
+
pitch: Optional[torch.Tensor]=None,
|
1066 |
+
f0: Optional[torch.Tensor]=None,
|
1067 |
+
f0t: Optional[torch.Tensor]=None,
|
1068 |
+
harmonic: Optional[torch.Tensor]=None,
|
1069 |
+
aperiodic: Optional[torch.Tensor]=None,
|
1070 |
+
phase: Optional[torch.Tensor]=None,
|
1071 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
1072 |
+
|
1073 |
+
en= TensorDict(batch_size=[1], device=self.device, dtype=self.dtype)
|
1074 |
+
|
1075 |
+
en= {}
|
1076 |
+
if f0 is not None:
|
1077 |
+
en["f0"] = f0
|
1078 |
+
if f0t is not None:
|
1079 |
+
en["f0t"] = f0t
|
1080 |
+
if harmonic is not None:
|
1081 |
+
en["harmonic"] = harmonic
|
1082 |
+
if aperiodic is not None:
|
1083 |
+
en["aperiodic"] = aperiodic
|
1084 |
+
if phase is not None:
|
1085 |
+
en["phase"] = phase
|
1086 |
+
if pitch is not None:
|
1087 |
+
en["pitch"] = pitch
|
1088 |
+
if waveform is not None:
|
1089 |
+
en["waveform"] = waveform
|
1090 |
+
if spectrogram is not None:
|
1091 |
+
en["spectrogram"] = spectrogram
|
1092 |
+
|
1093 |
+
x = input_ids
|
1094 |
+
for f, xa in en.items():
|
1095 |
+
|
1096 |
+
logits = self.processor(x, xa, en, f)
|
1097 |
+
|
1098 |
+
loss = None
|
1099 |
+
if labels is not None:
|
1100 |
+
loss = F.cross_entropy(
|
1101 |
+
logits.view(-1, logits.shape[-1]), labels.view(-1), ignore_index=0)
|
1102 |
+
|
1103 |
+
return {"logits": logits, "loss": loss}
|
1104 |
+
|
1105 |
+
@property
|
1106 |
+
def device(self):
|
1107 |
+
return next(self.parameters()).device
|
1108 |
+
@property
|
1109 |
+
def dtype(self):
|
1110 |
+
return next(self.parameters()).dtype
|
1111 |
+
```
|