Update modelA.py
Browse files
modelA.py
CHANGED
@@ -32,6 +32,13 @@ dtype = torch.float32
|
|
32 |
warnings.filterwarnings("ignore")
|
33 |
logging.basicConfig(level=logging.ERROR)
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def get_activation(act: str) -> nn.Module:
|
36 |
"""Get activation function by name."""
|
37 |
act_map = {
|
@@ -266,32 +273,33 @@ def get_dtype():
|
|
266 |
def tox():
|
267 |
return {"device": get_device(), "dtype": get_dtype()}
|
268 |
|
269 |
-
class
|
270 |
-
def __init__(self,
|
271 |
super().__init__()
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
self.
|
280 |
def forward(self, positions):
|
281 |
-
|
282 |
-
return position_embeddings
|
283 |
|
284 |
def sinusoids(length, channels, max_tscale=10000):
|
285 |
assert channels % 2 == 0
|
286 |
log_tscale_increment = np.log(max_tscale) / (channels // 2 - 1)
|
287 |
inv_tscales = torch.exp(-log_tscale_increment * torch.arange(channels // 2))
|
288 |
-
scaled_t = torch.arange(length)[:,
|
289 |
-
|
|
|
|
|
|
|
290 |
|
291 |
class rotary(nn.Module):
|
292 |
-
def __init__(self, dims, head, max_ctx=1500, radii=True, debug: List[str] = [], use_pbias=False):
|
293 |
super(rotary, self).__init__()
|
294 |
-
|
295 |
self.use_pbias = use_pbias
|
296 |
self.dims = dims
|
297 |
self.head = head
|
@@ -302,11 +310,43 @@ class rotary(nn.Module):
|
|
302 |
self.counter = 0
|
303 |
self.last_theta = None
|
304 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
self.bias = nn.Parameter(torch.zeros(max_ctx, dims // 2), requires_grad=True if use_pbias else False)
|
306 |
theta = (torch.tensor(10000, device=device, dtype=dtype))
|
307 |
self.theta = nn.Parameter(theta, requires_grad=True)
|
308 |
self.theta_values = []
|
309 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
def mel_scale_scalar(self, freq: float) -> float:
|
311 |
return 1127.0 * math.log(1.0 + freq / 700.0)
|
312 |
|
@@ -328,7 +368,6 @@ class rotary(nn.Module):
|
|
328 |
freq = (theta.unsqueeze(-1) / 220.0) * 700 * (
|
329 |
torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 8000/700)),
|
330 |
self.dim // 2, device=theta.device, dtype=theta.dtype) / 2595) - 1) / 1000
|
331 |
-
|
332 |
return freq
|
333 |
|
334 |
def _apply_radii(self, freqs, f0, ctx):
|
@@ -347,32 +386,37 @@ class rotary(nn.Module):
|
|
347 |
return torch.polar(torch.ones_like(freqs), freqs), None
|
348 |
|
349 |
def check_f0(self, f0, f0t, ctx):
|
350 |
-
if f0 is not None and f0.
|
|
|
|
|
|
|
|
|
|
|
351 |
return f0
|
352 |
-
elif f0t is not None and f0t.shape[
|
353 |
return f0t
|
354 |
else:
|
355 |
return None
|
356 |
|
357 |
def forward(self, x=None, enc=None, layer=None, feature=None) -> Tensor:
|
358 |
-
ctx=x
|
|
|
|
|
|
|
|
|
|
|
359 |
f0 = enc.get("f0") if enc is not None else None
|
360 |
f0t = enc.get("f0t") if enc is not None else None
|
361 |
-
|
362 |
f0 = self.check_f0(f0, f0t, ctx)
|
363 |
-
if f0 is not None
|
364 |
-
if f0.dim() == 2:
|
365 |
-
f0 = f0.squeeze(0)
|
366 |
-
theta = f0 + self.theta
|
367 |
-
else:
|
368 |
-
theta = self.theta
|
369 |
freqs = self.theta_freqs(theta)
|
370 |
t = torch.arange(ctx, device=device, dtype=dtype)
|
371 |
freqs = t[:, None] * freqs
|
372 |
freqs, radius = self._apply_radii(freqs, f0, ctx)
|
373 |
-
|
374 |
if "radius" in self.debug and self.counter == 10:
|
375 |
-
print(f" [{layer}] [Radius] {radius.shape if radius is not None else None} {radius.mean() if radius is not None else None} [Theta] {theta.mean() if theta is not None else None} [f0] {f0.shape if f0 is not None else None}
|
|
|
376 |
self.counter += 1
|
377 |
return freqs.unsqueeze(0)
|
378 |
|
@@ -389,19 +433,114 @@ class rotary(nn.Module):
|
|
389 |
x1 = x1.view(orig_shape)
|
390 |
return torch.cat([x1.type_as(x), x2], dim=-1)
|
391 |
|
392 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
393 |
|
394 |
-
|
395 |
def __init__(self, dims: int, head: int, rotary_emb: bool = True,
|
396 |
-
zero_val: float = 1e-7, minz: float = 1e-8, maxz: float = 1e-6, debug: List[str] = [], optim_attn=False, use_pbias=False):
|
|
|
397 |
super(MultiheadA, self).__init__()
|
398 |
-
|
399 |
self.dims = dims
|
400 |
self.head = head
|
401 |
self.head_dim = dims // head
|
402 |
self.debug = debug
|
403 |
self.counter = 0
|
404 |
self.use_pbias = use_pbias
|
|
|
|
|
|
|
405 |
|
406 |
self.q = nn.Linear(dims, dims).to(device, dtype)
|
407 |
self.k = nn.Linear(dims, dims, bias=False).to(device, dtype)
|
@@ -421,8 +560,10 @@ class MultiheadA(nn.Module):
|
|
421 |
dims=dims,
|
422 |
head=head,
|
423 |
debug=debug,
|
424 |
-
radii=
|
425 |
-
|
|
|
|
|
426 |
else:
|
427 |
self.rope = None
|
428 |
|
@@ -466,8 +607,23 @@ class MultiheadA(nn.Module):
|
|
466 |
q2 = q.shape[2]
|
467 |
k2 = k.shape[2]
|
468 |
|
469 |
-
|
470 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
471 |
else:
|
472 |
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
473 |
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
@@ -482,6 +638,9 @@ class MultiheadA(nn.Module):
|
|
482 |
if pbias is not None:
|
483 |
qk = qk + pbias[:,:,:q2,:q2]
|
484 |
|
|
|
|
|
|
|
485 |
token_ids = k[:, :, :, 0]
|
486 |
zscale = torch.ones_like(token_ids)
|
487 |
fzero = torch.clamp(F.softplus(self.fzero), self.minz, self.maxz)
|
@@ -643,31 +802,28 @@ class FEncoder(nn.Module):
|
|
643 |
if use_rope:
|
644 |
if spec_shape is not None:
|
645 |
self.rope = rotary(
|
646 |
-
dims=
|
647 |
-
head=
|
648 |
use_2d_axial=True,
|
649 |
spec_shape=spec_shape, debug=[])
|
650 |
else:
|
651 |
self.rope = rotary(
|
652 |
-
dims=
|
653 |
-
head=
|
654 |
use_2d_axial=False, debug=[])
|
655 |
else:
|
656 |
self.rope = None
|
657 |
-
self.
|
658 |
|
659 |
self.norm = RMSNorm(dims)
|
660 |
-
self._norm = RMSNorm(dims)
|
661 |
|
662 |
def apply_rope_to_features(self, x, layer=None, feature=None):
|
663 |
-
if feature in ["envelope", "phase"]:
|
664 |
-
feature = "spectrogram"
|
665 |
batch, ctx, dims = x.shape
|
666 |
x = x.view(batch, ctx, self.head, self.head_dim).permute(0, 2, 1, 3)
|
667 |
-
if
|
668 |
-
rope_freqs = self.rope(ctx, layer=layer,
|
669 |
else:
|
670 |
-
rope_freqs = self.rope(ctx, layer=layer,
|
671 |
x = self.rope.apply_rotary(x, rope_freqs)
|
672 |
x = x.permute(0, 2, 1, 3).contiguous().view(batch, ctx, dims)
|
673 |
return x
|
@@ -677,10 +833,9 @@ class FEncoder(nn.Module):
|
|
677 |
if self.use_rope:
|
678 |
x = self.apply_rope_to_features(x, layer=layer, feature=feature)
|
679 |
else:
|
680 |
-
x = x + self.
|
681 |
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
682 |
-
|
683 |
-
return x
|
684 |
|
685 |
class WEncoder(nn.Module):
|
686 |
def __init__(self, input_dims, dims, head, layer, kernel_size, act, use_rope=False):
|
@@ -693,7 +848,6 @@ class WEncoder(nn.Module):
|
|
693 |
self.dims = dims
|
694 |
|
695 |
act_fn = get_activation(act)
|
696 |
-
|
697 |
self.downsample = nn.Sequential(
|
698 |
Conv1d(input_dims, dims//8, kernel_size=15, stride=8, padding=7), act_fn,
|
699 |
Conv1d(dims//8, dims//4, kernel_size=7, stride=4, padding=3), act_fn,
|
@@ -709,7 +863,7 @@ class WEncoder(nn.Module):
|
|
709 |
debug=[])
|
710 |
else:
|
711 |
self.rope = None
|
712 |
-
self.
|
713 |
self.norm = RMSNorm(dims)
|
714 |
|
715 |
def apply_rope_to_features(self, x, layer=None, feature=None):
|
@@ -729,7 +883,7 @@ class WEncoder(nn.Module):
|
|
729 |
if self.use_rope:
|
730 |
x = self.apply_rope_to_features(x, layer=layer)
|
731 |
else:
|
732 |
-
x = x + self.
|
733 |
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
734 |
return self.norm(x)
|
735 |
|
@@ -757,7 +911,7 @@ class PEncoder(nn.Module):
|
|
757 |
debug=[])
|
758 |
else:
|
759 |
self.rope = None
|
760 |
-
self.
|
761 |
self.norm = RMSNorm(dims)
|
762 |
|
763 |
def apply_rope_to_features(self, x, layer=None, feature=None):
|
@@ -775,20 +929,15 @@ class PEncoder(nn.Module):
|
|
775 |
if self.use_rope:
|
776 |
x = self.apply_rope_to_features(x, layer=layer)
|
777 |
else:
|
778 |
-
x = x + self.
|
779 |
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
780 |
-
|
781 |
-
return x
|
782 |
|
783 |
class theBridge(nn.Module):
|
784 |
def __init__(self, vocab: int, mels: int, ctx: int, dims: int, head: int, layer: int,
|
785 |
debug: List[str], features: List[str], act: str = "gelu"):
|
786 |
super(theBridge, self).__init__()
|
787 |
|
788 |
-
self.ctx = ctx
|
789 |
-
self.dims = dims
|
790 |
-
self.head = head
|
791 |
-
self.head_dim = dims // head
|
792 |
self.debug = debug
|
793 |
self.counter = 0
|
794 |
self.dropout = 0.01
|
@@ -798,30 +947,26 @@ class theBridge(nn.Module):
|
|
798 |
|
799 |
self.token = nn.Embedding(vocab, dims, device=device, dtype=dtype)
|
800 |
self.positional = nn.Parameter(torch.empty(ctx, dims, device=device, dtype=dtype), requires_grad=True)
|
801 |
-
self.sinusoid = lambda length: sinusoids(length, dims)
|
802 |
self.blend = nn.Parameter(torch.tensor(0.5, device=device, dtype=dtype), requires_grad=True)
|
803 |
-
self.
|
804 |
|
805 |
with torch.no_grad():
|
806 |
self.token.weight[0].zero_()
|
807 |
|
808 |
self.block = nn.ModuleList([
|
809 |
-
Residual(ctx=ctx, dims=dims, head=head, act=
|
810 |
for _ in range(layer)])
|
811 |
|
812 |
self.cross_attn = nn.ModuleList([
|
813 |
-
Residual(ctx=ctx, dims=dims, head=head, act=
|
814 |
for _ in range(layer)])
|
815 |
|
816 |
self.cross_modal = nn.ModuleList([
|
817 |
-
Residual(ctx=ctx, dims=dims, head=head, act=
|
818 |
for _ in range(layer)])
|
819 |
|
820 |
mask = torch.tril(torch.ones(ctx, ctx), diagonal=0).unsqueeze(0).unsqueeze(0)
|
821 |
self.register_buffer("mask", mask, persistent=False)
|
822 |
-
self.register_buffer("mask_win", self.window_mask(ctx, ctx), persistent=False)
|
823 |
-
self.register_buffer("mask_cat", self.modal_mask(ctx, ctx), persistent=False)
|
824 |
-
self.register_buffer("mask_cross", self.cross_mask(ctx, ctx), persistent=False)
|
825 |
|
826 |
act_fn = get_activation(act)
|
827 |
if features == ["spectrogram", "waveform", "pitch"]:
|
@@ -846,83 +991,64 @@ class theBridge(nn.Module):
|
|
846 |
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
|
847 |
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)] if "phase" in features else None)})
|
848 |
|
849 |
-
|
850 |
-
mask = torch.tril(torch.ones(text_ctx, text_ctx, device=device), diagonal=0)
|
851 |
-
audio_mask = torch.tril(torch.ones(text_ctx, aud_ctx - text_ctx, device=device))
|
852 |
-
full_mask = torch.cat([mask, audio_mask], dim=-1)
|
853 |
-
return full_mask.unsqueeze(0).unsqueeze(0)
|
854 |
-
|
855 |
-
def modal_mask(self, text_len, audio_len):
|
856 |
-
combined_mask = torch.ones(text_len + audio_len, text_len + audio_len, device=device)
|
857 |
-
combined_mask[:text_len, :text_len] = torch.tril(torch.ones(text_len, text_len, device=device))
|
858 |
-
combined_mask[:text_len, text_len:] = torch.tril(torch.ones(text_len, audio_len, device=device))
|
859 |
-
return combined_mask.unsqueeze(0).unsqueeze(0)
|
860 |
-
|
861 |
-
def cross_mask(self, text_len, audio_len):
|
862 |
-
mask = torch.tril(torch.ones(text_len, text_len, device=device))
|
863 |
-
audio_mask = torch.tril(torch.ones(text_len, audio_len, device=device))
|
864 |
-
full_mask = torch.cat([mask, audio_mask], dim=-1)
|
865 |
-
return full_mask.unsqueeze(0).unsqueeze(0)
|
866 |
|
867 |
def forward(self, x, enc, layer='decoder', feature=None) -> Tensor:
|
|
|
|
|
868 |
enc = dict_to(enc, device, dtype)
|
869 |
_text_len = x.shape[1]
|
870 |
|
871 |
x = self.token(x) + self.positional[:x.shape[1]]
|
872 |
-
|
873 |
-
|
874 |
for f in enc:
|
875 |
if f in self.features:
|
876 |
xa = enc[f]
|
877 |
for block in self.blocks[f]:
|
878 |
xa = block(xa, enc=enc, layer=layer, feature=feature)
|
|
|
|
|
879 |
|
880 |
-
for block in self.block:
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
mask = self.mask_win[:x.shape[1], :xa.shape[1]]
|
886 |
-
out = block(x, xa=xa, mask=mask, enc=enc, layer=layer)
|
887 |
if self.sequential:
|
888 |
x = out
|
889 |
else:
|
890 |
a = torch.sigmoid(self.blend)
|
891 |
x = a * out + (1 - a) * x
|
|
|
|
|
892 |
|
893 |
for block in self.cross_attn:
|
894 |
-
if
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
x = block(x, xa=xa, mask=mask_x, enc=enc, layer=layer)
|
899 |
-
xa = block(xa, xa=x, mask=mask_xa, enc=enc, layer=layer)
|
900 |
-
out = block(x, xa=xa, mask=mask_x, enc=enc, layer=layer)
|
901 |
if self.sequential:
|
902 |
x = out
|
903 |
else:
|
904 |
a = torch.sigmoid(self.blend)
|
905 |
x = a * out + (1 - a) * x
|
|
|
|
|
906 |
|
907 |
for block in self.cross_modal:
|
908 |
-
if
|
909 |
-
xa = xa + self.sinusoid(xa.shape[1])
|
910 |
xcat = torch.cat([x, xa], dim=1)
|
911 |
-
|
912 |
-
x = block(xcat, xa=None, mask=mask, enc=enc, layer=layer)
|
913 |
x = x[:, :_text_len]
|
914 |
-
|
915 |
if self.counter < 1 and "encoder" in self.debug:
|
916 |
-
s = enc.get("spectrogram")
|
917 |
-
w = enc.get("waveform")
|
918 |
-
p = default(enc.get("pitch"), enc.get("f0"))
|
919 |
-
plot_waveform(x=s, w=w, p=p, hop_length=128)
|
920 |
shapes = {k: v.shape for k, v in enc.items()}
|
921 |
print(f"Step {self.counter}: mode: {list(enc.keys()) }: shapes: {shapes}")
|
922 |
self.counter += 1
|
923 |
-
|
924 |
-
x = self.
|
925 |
-
|
|
|
926 |
|
927 |
class Echo(nn.Module):
|
928 |
def __init__(self, param: Dimensions):
|
@@ -977,7 +1103,8 @@ class Echo(nn.Module):
|
|
977 |
else:
|
978 |
feature = "spectrogram"
|
979 |
|
980 |
-
logits = self.processor(input_ids, enc, feature)
|
|
|
981 |
|
982 |
loss = None
|
983 |
if labels is not None:
|
@@ -1089,7 +1216,7 @@ class Echo(nn.Module):
|
|
1089 |
"eos_token_id": self.eos_token_id,
|
1090 |
})
|
1091 |
return Config()
|
1092 |
-
|
1093 |
def setup_tokenizer(token: str):
|
1094 |
from tokenizers import Tokenizer
|
1095 |
tokenizer = Tokenizer.from_file("./tokenizer.json")
|
@@ -1117,7 +1244,6 @@ def setup_tokenizer(token: str):
|
|
1117 |
results.append(tokenizer.decode(ids))
|
1118 |
return results
|
1119 |
|
1120 |
-
|
1121 |
def save_pretrained(save_dir):
|
1122 |
os.makedirs(save_dir, exist_ok=True)
|
1123 |
tokenizer.save(f"{save_dir}/tokenizer.json")
|
@@ -1159,8 +1285,7 @@ def world_to_mel(sp, ap, sample_rate=16000, n_mels=128):
|
|
1159 |
|
1160 |
return sp_mel, ap_mel
|
1161 |
|
1162 |
-
def extract_features(batch, tokenizer, waveform=False, spec=True, f0=
|
1163 |
-
|
1164 |
dataset_config = {
|
1165 |
"hop_length": 256,
|
1166 |
"f_min": 150,
|
@@ -1175,113 +1300,100 @@ def extract_features(batch, tokenizer, waveform=False, spec=True, f0=False, f0t=
|
|
1175 |
"mel_scale": "htk",
|
1176 |
"norm": None,
|
1177 |
"normalized": False,
|
1178 |
-
|
1179 |
|
1180 |
audio = batch["audio"]
|
1181 |
sr = audio["sampling_rate"]
|
1182 |
-
wave = load_wave(wave_data=audio, sample_rate=sr)
|
1183 |
labels = tokenizer.encode(batch["transcription"])
|
1184 |
|
1185 |
-
|
|
|
|
|
|
|
1186 |
wav = load_wave(wave_data=audio, sample_rate=sr)
|
1187 |
-
|
1188 |
-
wav = None
|
1189 |
|
1190 |
if spec:
|
1191 |
-
transform = torchaudio.transforms.MelSpectrogram(
|
1192 |
-
mel_spectrogram = transform(
|
1193 |
log_mel = torch.clamp(mel_spectrogram, min=1e-10).log10()
|
1194 |
log_mel = torch.maximum(log_mel, log_mel.max() - 8.0)
|
1195 |
-
|
1196 |
-
|
1197 |
-
else:
|
1198 |
-
spec = None
|
1199 |
|
1200 |
-
if f0:
|
1201 |
-
wavnp = wave.numpy().astype(np.float64)
|
1202 |
f0_np, t = pw.dio(wavnp, sample_rate,
|
1203 |
-
|
1204 |
f0_np = pw.stonemask(wavnp, f0_np, t, sample_rate)
|
1205 |
-
f0 = torch.from_numpy(f0_np)
|
1206 |
-
|
1207 |
-
if f0t:
|
1208 |
-
audio_duration = len(wavnp) / sample_rate
|
1209 |
-
T = len(labels)
|
1210 |
-
tok_dur_sec = audio_duration / T
|
1211 |
-
token_starts = np.arange(T) * tok_dur_sec
|
1212 |
-
token_ends = token_starts + tok_dur_sec
|
1213 |
-
start_idx = np.searchsorted(t, token_starts, side="left")
|
1214 |
-
end_idx = np.searchsorted(t, token_ends, side="right")
|
1215 |
-
pitch_tok = np.zeros(T, dtype=np.float32)
|
1216 |
-
for i in range(T):
|
1217 |
-
lo, hi = start_idx[i], max(start_idx[i]+1, end_idx[i])
|
1218 |
-
segment = f0_np[lo:hi]
|
1219 |
-
pitch_tok[i] = segment.mean() if mode=="mean" else (np.median(segment) if mode=="median" else segment[-1])
|
1220 |
-
pitch_tok[pitch_tok < 100.0] = 0.0
|
1221 |
-
|
1222 |
-
bos_pitch = pitch_tok[0] if len(pitch_tok) > 0 else 0.0
|
1223 |
-
f0t = torch.from_numpy(np.concatenate([[bos_pitch], pitch_tok]))
|
1224 |
-
f0t = torch.from_numpy(pitch_tok)
|
1225 |
-
f0 = torch.from_numpy(f0_np)
|
1226 |
-
|
1227 |
-
spnp = pw.cheaptrick(wavnp, f0_np, t, sample_rate, fft_size=256)
|
1228 |
-
apnp = pw.d4c(wavnp, f0_np, t, sample_rate, fft_size=256)
|
1229 |
-
sp = torch.from_numpy(spnp)
|
1230 |
-
ap = torch.from_numpy(apnp)
|
1231 |
-
sp = sp[:, :128].contiguous().T
|
1232 |
-
ap = ap[:, :128].contiguous().T
|
1233 |
-
f0t = torch.where(f0t == 0.0, torch.zeros_like(f0t), (f0t - 71.0) / (400.0 - 71.0))
|
1234 |
-
sp = torch.where(sp == 0.0, torch.zeros_like(sp), sp / 1.0)
|
1235 |
-
ap= torch.where(ap == 0.0, torch.zeros_like(ap), ap / 1.0)
|
1236 |
|
1237 |
-
|
1238 |
-
|
1239 |
-
|
1240 |
-
|
1241 |
-
|
1242 |
-
|
1243 |
-
|
1244 |
-
|
1245 |
-
|
1246 |
-
|
1247 |
-
|
1248 |
-
t =
|
1249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1250 |
|
1251 |
if debug:
|
1252 |
-
print(f"['f0']: {
|
1253 |
-
print(f"['
|
1254 |
-
print(f"['
|
1255 |
-
print(f"['
|
1256 |
-
print(f"['
|
1257 |
-
print(f"['
|
1258 |
-
print(f"['
|
1259 |
|
1260 |
return {
|
1261 |
-
"
|
1262 |
-
"
|
1263 |
-
"
|
1264 |
-
"
|
1265 |
-
"
|
|
|
1266 |
"labels": labels,
|
1267 |
-
"waveform": wav,
|
1268 |
-
"spectrogram": spec,
|
1269 |
-
|
1270 |
}
|
1271 |
|
1272 |
-
def prepare_datasets(tokenizer, token, sanity_check=False, sample_rate=16000, **dataset_config):
|
1273 |
|
1274 |
if sanity_check:
|
1275 |
test = load_dataset(
|
1276 |
-
"google/fleurs", "en_us", token=token, split="test
|
1277 |
-
).cast_column("audio", Audio(
|
1278 |
-
|
1279 |
dataset = test.map(
|
1280 |
lambda x: extract_features(x, tokenizer, **dataset_config),
|
1281 |
remove_columns=test.column_names)
|
1282 |
-
dataset = dataset(remove_columns=["audio", "transcription"]).with_format(type="torch")
|
1283 |
train_dataset = dataset
|
1284 |
test_dataset = dataset
|
|
|
1285 |
else:
|
1286 |
|
1287 |
cache_dir = "./processed_datasets"
|
@@ -1300,10 +1412,8 @@ def prepare_datasets(tokenizer, token, sanity_check=False, sample_rate=16000, **
|
|
1300 |
len(x["audio"]["array"]) > 0 and
|
1301 |
len(x["audio"]["array"]) < 2048 * 160)
|
1302 |
|
1303 |
-
raw_train = load_dataset(
|
1304 |
-
|
1305 |
-
raw_test = load_dataset(
|
1306 |
-
"google/fleurs", "en_us", token=token, split="test[:100]", trust_remote_code=True)
|
1307 |
|
1308 |
raw_train = raw_train.filter(filter_func)
|
1309 |
raw_test = raw_test.filter(filter_func)
|
@@ -1318,8 +1428,8 @@ def prepare_datasets(tokenizer, token, sanity_check=False, sample_rate=16000, **
|
|
1318 |
lambda x: extract_features(x, tokenizer, **dataset_config),
|
1319 |
remove_columns=raw_test.column_names)
|
1320 |
|
1321 |
-
train_dataset.save_to_disk(cache_file_train)
|
1322 |
-
test_dataset.save_to_disk(cache_file_test)
|
1323 |
return train_dataset, test_dataset
|
1324 |
|
1325 |
@dataclass
|
@@ -1401,22 +1511,21 @@ def wer_batch(references, hypotheses):
|
|
1401 |
total_words += len(ref_words)
|
1402 |
return (total_errors / total_words) * 100 if total_words > 0 else 0.0
|
1403 |
|
1404 |
-
def clean_ids(ids, pad_token_id=0):
|
1405 |
if isinstance(ids, torch.Tensor):
|
1406 |
ids = ids.tolist()
|
1407 |
-
return [int(id) for id in ids if id != -100 and id != pad_token_id]
|
1408 |
|
1409 |
-
def clean_batch(batch_ids, pad_token_id=0):
|
1410 |
-
return [clean_ids(seq, pad_token_id) for seq in batch_ids]
|
1411 |
|
1412 |
def compute_metrics(pred, tokenizer=None, model=None, print_pred=False, num_samples=0, optimizer=None, scheduler=None):
|
1413 |
-
|
1414 |
label_ids = pred.label_ids
|
1415 |
pred_ids = pred.predictions[0]
|
1416 |
-
label_ids = clean_batch(label_ids
|
1417 |
-
pred_ids = clean_batch(pred_ids
|
1418 |
-
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=
|
1419 |
-
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=
|
1420 |
|
1421 |
if print_pred:
|
1422 |
for i in range(min(num_samples, len(pred_ids))):
|
@@ -1433,17 +1542,25 @@ def compute_metrics(pred, tokenizer=None, model=None, print_pred=False, num_samp
|
|
1433 |
else:
|
1434 |
trainable_params = 0.0
|
1435 |
efficiency_score = 0.0
|
1436 |
-
return {
|
1437 |
-
|
1438 |
-
|
1439 |
-
|
|
|
|
|
|
|
1440 |
|
1441 |
def main():
|
1442 |
token = ""
|
1443 |
log_dir = os.path.join('./output/logs', datetime.now().strftime('%m-%d_%H_%M_%S'))
|
1444 |
os.makedirs(log_dir, exist_ok=True)
|
1445 |
tokenizer = setup_tokenizer(token)
|
1446 |
-
train_dataset, test_dataset = prepare_datasets(
|
|
|
|
|
|
|
|
|
|
|
1447 |
|
1448 |
param = Dimensions(
|
1449 |
vocab=40000,
|
@@ -1453,7 +1570,7 @@ def main():
|
|
1453 |
head=4,
|
1454 |
layer=4,
|
1455 |
act="swish",
|
1456 |
-
debug={"
|
1457 |
features = ["spectrogram"],
|
1458 |
)
|
1459 |
|
@@ -1472,20 +1589,20 @@ def main():
|
|
1472 |
logging_steps=10,
|
1473 |
logging_dir=log_dir,
|
1474 |
eval_strategy="steps",
|
1475 |
-
save_strategy="
|
1476 |
report_to=["tensorboard"],
|
1477 |
push_to_hub=False,
|
1478 |
disable_tqdm=False,
|
1479 |
save_total_limit=1,
|
1480 |
label_names=["labels"],
|
1481 |
save_safetensors=False,
|
1482 |
-
eval_on_start=
|
1483 |
batch_eval_metrics=False,
|
1484 |
)
|
1485 |
from functools import partial
|
1486 |
metrics_fn = partial(compute_metrics,
|
1487 |
print_pred=True,
|
1488 |
-
num_samples=
|
1489 |
tokenizer=tokenizer, model=model)
|
1490 |
|
1491 |
optimizer = torch.optim.AdamW(model.parameters(), lr=0.00025, eps=1e-8, weight_decay=0.025, betas=(0.9, 0.999),
|
@@ -1499,9 +1616,11 @@ def main():
|
|
1499 |
train_dataset=train_dataset,
|
1500 |
eval_dataset=test_dataset,
|
1501 |
data_collator=DataCollator(tokenizer=tokenizer),
|
|
|
1502 |
compute_metrics=metrics_fn,
|
1503 |
optimizers=(optimizer, scheduler)
|
1504 |
)
|
|
|
1505 |
model.init_weights()
|
1506 |
trainer.train()
|
1507 |
|
|
|
32 |
warnings.filterwarnings("ignore")
|
33 |
logging.basicConfig(level=logging.ERROR)
|
34 |
|
35 |
+
PATH = 'E:/hf'
|
36 |
+
os.environ['HF_HOME'] = PATH
|
37 |
+
os.environ['HF_DATASETS_CACHE'] = PATH
|
38 |
+
os.environ['TORCH_HOME'] = PATH
|
39 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
40 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
41 |
+
|
42 |
def get_activation(act: str) -> nn.Module:
|
43 |
"""Get activation function by name."""
|
44 |
act_map = {
|
|
|
273 |
def tox():
|
274 |
return {"device": get_device(), "dtype": get_dtype()}
|
275 |
|
276 |
+
class Sinusoids(nn.Module):
|
277 |
+
def __init__(self, length, channels, max_tscale=10000):
|
278 |
super().__init__()
|
279 |
+
assert channels % 2 == 0
|
280 |
+
log_tscale_increment = np.log(max_tscale) / (channels // 2 - 1)
|
281 |
+
inv_tscales = torch.exp(-log_tscale_increment * torch.arange(channels // 2))
|
282 |
+
scaled_t = torch.arange(length)[:, None] * inv_tscales[None, :]
|
283 |
+
pos1 = torch.sin(scaled_t)
|
284 |
+
pos2 = torch.cos(scaled_t)
|
285 |
+
positions = torch.cat([pos1, pos2], dim=1)
|
286 |
+
self.embedding = nn.Embedding.from_pretrained(positions, freeze=False)
|
287 |
def forward(self, positions):
|
288 |
+
return self.embedding(positions)
|
|
|
289 |
|
290 |
def sinusoids(length, channels, max_tscale=10000):
|
291 |
assert channels % 2 == 0
|
292 |
log_tscale_increment = np.log(max_tscale) / (channels // 2 - 1)
|
293 |
inv_tscales = torch.exp(-log_tscale_increment * torch.arange(channels // 2))
|
294 |
+
scaled_t = torch.arange(length)[:, None] * inv_tscales[None, :]
|
295 |
+
pos1 = torch.sin(scaled_t)
|
296 |
+
pos2 = torch.cos(scaled_t)
|
297 |
+
positions = torch.cat([pos1, pos2], dim=1)
|
298 |
+
return nn.Parameter(positions.clone())
|
299 |
|
300 |
class rotary(nn.Module):
|
301 |
+
def __init__(self, dims, head, max_ctx=1500, radii=True, debug: List[str] = [], use_pbias=False, use_2d_axial=False, spec_shape=None, use_true_2d_relative=False, freq_bins=None):
|
302 |
super(rotary, self).__init__()
|
|
|
303 |
self.use_pbias = use_pbias
|
304 |
self.dims = dims
|
305 |
self.head = head
|
|
|
310 |
self.counter = 0
|
311 |
self.last_theta = None
|
312 |
|
313 |
+
self.use_2d_axial = use_2d_axial
|
314 |
+
if use_2d_axial and spec_shape is not None:
|
315 |
+
time_frames, freq_bins = spec_shape
|
316 |
+
self.time_frames = time_frames
|
317 |
+
self.freq_bins = freq_bins
|
318 |
+
time_theta = 50.0
|
319 |
+
time_freqs = 1.0 / (time_theta ** (torch.arange(0, self.head_dim, 2).float() / self.head_dim))
|
320 |
+
self.register_buffer('time_freqs', time_freqs)
|
321 |
+
freq_theta = 100.0
|
322 |
+
freq_freqs = 1.0 / (freq_theta ** (torch.arange(0, self.head_dim, 2).float() / self.head_dim))
|
323 |
+
self.register_buffer('freq_freqs', freq_freqs)
|
324 |
+
|
325 |
self.bias = nn.Parameter(torch.zeros(max_ctx, dims // 2), requires_grad=True if use_pbias else False)
|
326 |
theta = (torch.tensor(10000, device=device, dtype=dtype))
|
327 |
self.theta = nn.Parameter(theta, requires_grad=True)
|
328 |
self.theta_values = []
|
329 |
|
330 |
+
self.use_true_2d_relative = use_true_2d_relative
|
331 |
+
self.freq_bins = freq_bins
|
332 |
+
self.true2d_dim = (dims // head) // 2
|
333 |
+
self.omega_t = nn.Parameter(torch.randn(self.true2d_dim))
|
334 |
+
self.omega_f = nn.Parameter(torch.randn(self.true2d_dim))
|
335 |
+
|
336 |
+
def axial_freqs(self, seq_len):
|
337 |
+
if not self.use_2d_axial:
|
338 |
+
return None
|
339 |
+
time_frames = self.time_frames
|
340 |
+
freq_bins = self.freq_bins
|
341 |
+
t = torch.arange(seq_len, device=device, dtype=dtype)
|
342 |
+
t_x = (t % time_frames).float()
|
343 |
+
t_y = torch.div(t, time_frames, rounding_mode='floor').float()
|
344 |
+
freqs_x = torch.outer(t_x, self.time_freqs)
|
345 |
+
freqs_y = torch.outer(t_y, self.freq_freqs)
|
346 |
+
freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
|
347 |
+
freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
|
348 |
+
return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
|
349 |
+
|
350 |
def mel_scale_scalar(self, freq: float) -> float:
|
351 |
return 1127.0 * math.log(1.0 + freq / 700.0)
|
352 |
|
|
|
368 |
freq = (theta.unsqueeze(-1) / 220.0) * 700 * (
|
369 |
torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 8000/700)),
|
370 |
self.dim // 2, device=theta.device, dtype=theta.dtype) / 2595) - 1) / 1000
|
|
|
371 |
return freq
|
372 |
|
373 |
def _apply_radii(self, freqs, f0, ctx):
|
|
|
386 |
return torch.polar(torch.ones_like(freqs), freqs), None
|
387 |
|
388 |
def check_f0(self, f0, f0t, ctx):
|
389 |
+
if f0 is not None and f0.dim() == 2:
|
390 |
+
f0 = f0.squeeze(0)
|
391 |
+
if f0t is not None and f0t.dim() == 2:
|
392 |
+
f0t = f0t.squeeze(0)
|
393 |
+
|
394 |
+
if f0 is not None and f0.shape[0] == ctx:
|
395 |
return f0
|
396 |
+
elif f0t is not None and f0t.shape[0] == ctx:
|
397 |
return f0t
|
398 |
else:
|
399 |
return None
|
400 |
|
401 |
def forward(self, x=None, enc=None, layer=None, feature=None) -> Tensor:
|
402 |
+
ctx = x
|
403 |
+
if self.use_2d_axial and feature == "spectrogram":
|
404 |
+
freqs_2d = self.axial_freqs(ctx)
|
405 |
+
if freqs_2d is not None:
|
406 |
+
return freqs_2d.unsqueeze(0)
|
407 |
+
|
408 |
f0 = enc.get("f0") if enc is not None else None
|
409 |
f0t = enc.get("f0t") if enc is not None else None
|
|
|
410 |
f0 = self.check_f0(f0, f0t, ctx)
|
411 |
+
theta = f0 + self.theta if f0 is not None else self.theta
|
|
|
|
|
|
|
|
|
|
|
412 |
freqs = self.theta_freqs(theta)
|
413 |
t = torch.arange(ctx, device=device, dtype=dtype)
|
414 |
freqs = t[:, None] * freqs
|
415 |
freqs, radius = self._apply_radii(freqs, f0, ctx)
|
416 |
+
|
417 |
if "radius" in self.debug and self.counter == 10:
|
418 |
+
print(f" [{layer}] [Radius] {radius.shape if radius is not None else None} {radius.mean() if radius is not None else None} [Theta] {theta.mean() if theta is not None else None} [f0] {f0.shape if f0 is not None else None} [ctx] {ctx}")
|
419 |
+
|
420 |
self.counter += 1
|
421 |
return freqs.unsqueeze(0)
|
422 |
|
|
|
433 |
x1 = x1.view(orig_shape)
|
434 |
return torch.cat([x1.type_as(x), x2], dim=-1)
|
435 |
|
436 |
+
# @staticmethod
|
437 |
+
# def apply_rotary(x, freqs):
|
438 |
+
# # x: [batch, head, seq, head_dim]
|
439 |
+
# # freqs: [1, seq, head_dim] or [1, seq, 2*head_dim] for 2D
|
440 |
+
# if freqs.shape[-1] == x.shape[-1]:
|
441 |
+
# # 1D rotary
|
442 |
+
# x1 = x
|
443 |
+
# orig_shape = x1.shape
|
444 |
+
# if x1.ndim == 2:
|
445 |
+
# x1 = x1.unsqueeze(0)
|
446 |
+
# x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
|
447 |
+
# x1 = torch.view_as_complex(x1) * freqs
|
448 |
+
# x1 = torch.view_as_real(x1).flatten(-2)
|
449 |
+
# x1 = x1.view(orig_shape)
|
450 |
+
# return x1.type_as(x)
|
451 |
+
# else:
|
452 |
+
# # 2D rotary: split x and apply to each axis
|
453 |
+
# head_dim = x.shape[-1] // 2
|
454 |
+
# x_time = x[..., :head_dim]
|
455 |
+
# x_freq = x[..., head_dim:]
|
456 |
+
# f_time = freqs[..., :head_dim]
|
457 |
+
# f_freq = freqs[..., head_dim:]
|
458 |
+
# # Apply rotary to each axis
|
459 |
+
# def apply_axis(xa, freqs):
|
460 |
+
# orig_shape = xa.shape
|
461 |
+
# xa = xa.float().reshape(*xa.shape[:-1], -1, 2).contiguous()
|
462 |
+
# xa = torch.view_as_complex(xa) * freqs
|
463 |
+
# xa = torch.view_as_real(xa).flatten(-2)
|
464 |
+
# xa = xa.view(orig_shape)
|
465 |
+
# return xa.type_as(x)
|
466 |
+
# x_time = apply_axis(x_time, f_time)
|
467 |
+
# x_freq = apply_axis(x_freq, f_freq)
|
468 |
+
# return torch.cat([x_time, x_freq], dim=-1)
|
469 |
+
|
470 |
+
# def true2d_relative_angle(self, t_q, f_q, t_k, f_k):
|
471 |
+
# # t_q, f_q, t_k, f_k: [seq]
|
472 |
+
# delta_t = t_q[:, None] - t_k[None, :] # [seq, seq]
|
473 |
+
# delta_f = f_q[:, None] - f_k[None, :] # [seq, seq]
|
474 |
+
# angle = delta_t[..., None] * self.omega_t + delta_f[..., None] * self.omega_f # [seq, seq, true2d_dim]
|
475 |
+
# angle = torch.cat([angle, angle], dim=-1) # [seq, seq, head_dim]
|
476 |
+
# return angle
|
477 |
+
|
478 |
+
# def true2d_apply_rotary(self, q, k, freqs):
|
479 |
+
# # q, k: [batch, head, seq, head_dim]
|
480 |
+
# # freqs: [seq, seq, head_dim//2] complex, or [seq, seq, head_dim] if you want
|
481 |
+
# b, h, seq, d = q.shape
|
482 |
+
# d2 = d // 2
|
483 |
+
# q_exp = q.unsqueeze(3).expand(b, h, seq, seq, d)
|
484 |
+
# k_exp = k.unsqueeze(2).expand(b, h, seq, seq, d)
|
485 |
+
# # Convert to complex
|
486 |
+
# def to_complex(x):
|
487 |
+
# return torch.complex(x[..., 0::2], x[..., 1::2]) # [b, h, seq, seq, d2]
|
488 |
+
# q_c = to_complex(q_exp)
|
489 |
+
# k_c = to_complex(k_exp)
|
490 |
+
# # Multiply by freqs (which should be [seq, seq, d2] complex)
|
491 |
+
# q_rot = q_c * freqs
|
492 |
+
# k_rot = k_c * freqs
|
493 |
+
# # Back to real
|
494 |
+
# def to_real(x):
|
495 |
+
# return torch.stack([x.real, x.imag], dim=-1).flatten(-2)
|
496 |
+
# q_rot = to_real(q_rot)
|
497 |
+
# k_rot = to_real(k_rot)
|
498 |
+
# return q_rot, k_rot
|
499 |
+
|
500 |
+
def parallel_slice(self, q, k, v, mask=None):
|
501 |
+
batch, head, ctx, dims = q.shape
|
502 |
+
head_dim = self.head_dim
|
503 |
+
batch, ctx, dims = q.shape
|
504 |
+
ctx_len = k.shape[1]
|
505 |
+
head = dims // head_dim
|
506 |
+
|
507 |
+
scores = torch.zeros(batch, head, ctx, ctx_len, device=q.device)
|
508 |
+
|
509 |
+
for h in range(head):
|
510 |
+
start_idx = h * head_dim
|
511 |
+
end_idx = start_idx + head_dim
|
512 |
+
q_h = q[:, :, start_idx:end_idx]
|
513 |
+
k_h = k[:, :, start_idx:end_idx]
|
514 |
+
|
515 |
+
scores[:, h] = torch.bmm(q_h, k_h.transpose(1, 2)) / math.sqrt(head_dim)
|
516 |
+
|
517 |
+
if mask is not None:
|
518 |
+
scores = scores + mask.unsqueeze(0).unsqueeze(0)
|
519 |
+
|
520 |
+
attn_weights = F.softmax(scores, dim=-1)
|
521 |
+
|
522 |
+
output = torch.zeros_like(q)
|
523 |
+
for h in range(head):
|
524 |
+
start_idx = h * head_dim
|
525 |
+
end_idx = start_idx + head_dim
|
526 |
+
v_h = v[:, :, start_idx:end_idx]
|
527 |
+
output[:, :, start_idx:end_idx] = torch.bmm(attn_weights[:, h], v_h)
|
528 |
+
return output
|
529 |
|
530 |
+
class MultiheadA(nn.Module):
|
531 |
def __init__(self, dims: int, head: int, rotary_emb: bool = True,
|
532 |
+
zero_val: float = 1e-7, minz: float = 1e-8, maxz: float = 1e-6, debug: List[str] = [], optim_attn=False, use_pbias=False, use_true_2d_relative=False, freq_bins=None, radii=False, use_2d_axial=False, spec_shape=None, rbf=False):
|
533 |
+
|
534 |
super(MultiheadA, self).__init__()
|
|
|
535 |
self.dims = dims
|
536 |
self.head = head
|
537 |
self.head_dim = dims // head
|
538 |
self.debug = debug
|
539 |
self.counter = 0
|
540 |
self.use_pbias = use_pbias
|
541 |
+
self.use_true_2d_relative = use_true_2d_relative
|
542 |
+
self.freq_bins = freq_bins
|
543 |
+
self.rbf = rbf
|
544 |
|
545 |
self.q = nn.Linear(dims, dims).to(device, dtype)
|
546 |
self.k = nn.Linear(dims, dims, bias=False).to(device, dtype)
|
|
|
560 |
dims=dims,
|
561 |
head=head,
|
562 |
debug=debug,
|
563 |
+
radii=radii,
|
564 |
+
use_true_2d_relative=use_true_2d_relative,
|
565 |
+
freq_bins=freq_bins,
|
566 |
+
)
|
567 |
else:
|
568 |
self.rope = None
|
569 |
|
|
|
607 |
q2 = q.shape[2]
|
608 |
k2 = k.shape[2]
|
609 |
|
610 |
+
if self.use_true_2d_relative and feature == "spectrogram":
|
611 |
+
seq_len = q2
|
612 |
+
freq_bins = self.freq_bins
|
613 |
+
idxs = torch.arange(seq_len, device=q.device)
|
614 |
+
t_idx = idxs // freq_bins
|
615 |
+
f_idx = idxs % freq_bins
|
616 |
+
angle = self.rope.true2d_relative_angle(t_idx, f_idx, t_idx, f_idx)
|
617 |
+
q_rot, k_rot = self.rope.true2d_apply_rotary(q, k, angle)
|
618 |
+
scale = (self.dims // self.head) ** -0.25
|
619 |
+
qk = (q_rot * scale * k_rot * scale).sum(-1)
|
620 |
+
w = F.softmax(qk, dim=-1).to(q.dtype)
|
621 |
+
wv = torch.einsum('bhij,bhjd->bhid', w, v.unsqueeze(2).expand(-1, -1, seq_len, -1, -1))
|
622 |
+
wv = wv.permute(0, 2, 1, 3).flatten(start_dim=2)
|
623 |
+
return self.o(wv), qk
|
624 |
+
else:
|
625 |
+
q = self.rope.apply_rotary(q, (self.rope(x=q2, enc=enc, layer=layer)))
|
626 |
+
k = self.rope.apply_rotary(k, (self.rope(x=k2, enc=enc, layer=layer)))
|
627 |
else:
|
628 |
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
629 |
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
|
|
638 |
if pbias is not None:
|
639 |
qk = qk + pbias[:,:,:q2,:q2]
|
640 |
|
641 |
+
if mask is not None:
|
642 |
+
mask = mask[:q2, :q2]
|
643 |
+
|
644 |
token_ids = k[:, :, :, 0]
|
645 |
zscale = torch.ones_like(token_ids)
|
646 |
fzero = torch.clamp(F.softplus(self.fzero), self.minz, self.maxz)
|
|
|
802 |
if use_rope:
|
803 |
if spec_shape is not None:
|
804 |
self.rope = rotary(
|
805 |
+
dims=dims,
|
806 |
+
head=head,
|
807 |
use_2d_axial=True,
|
808 |
spec_shape=spec_shape, debug=[])
|
809 |
else:
|
810 |
self.rope = rotary(
|
811 |
+
dims=dims,
|
812 |
+
head=head,
|
813 |
use_2d_axial=False, debug=[])
|
814 |
else:
|
815 |
self.rope = None
|
816 |
+
self.sinusoid_pos = lambda length, dims: sinusoids(length, dims, max_tscale=10000)
|
817 |
|
818 |
self.norm = RMSNorm(dims)
|
|
|
819 |
|
820 |
def apply_rope_to_features(self, x, layer=None, feature=None):
|
|
|
|
|
821 |
batch, ctx, dims = x.shape
|
822 |
x = x.view(batch, ctx, self.head, self.head_dim).permute(0, 2, 1, 3)
|
823 |
+
if feature == "spectrogram" and self.rope is not None:
|
824 |
+
rope_freqs = self.rope(ctx, layer=layer, feature="spectrogram")
|
825 |
else:
|
826 |
+
rope_freqs = self.rope(ctx, layer=layer, feature="audio")
|
827 |
x = self.rope.apply_rotary(x, rope_freqs)
|
828 |
x = x.permute(0, 2, 1, 3).contiguous().view(batch, ctx, dims)
|
829 |
return x
|
|
|
833 |
if self.use_rope:
|
834 |
x = self.apply_rope_to_features(x, layer=layer, feature=feature)
|
835 |
else:
|
836 |
+
x = x + self.sinusoid_pos(x.shape[1], x.shape[-1]).to(x.device, x.dtype)
|
837 |
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
838 |
+
return self.norm(x)
|
|
|
839 |
|
840 |
class WEncoder(nn.Module):
|
841 |
def __init__(self, input_dims, dims, head, layer, kernel_size, act, use_rope=False):
|
|
|
848 |
self.dims = dims
|
849 |
|
850 |
act_fn = get_activation(act)
|
|
|
851 |
self.downsample = nn.Sequential(
|
852 |
Conv1d(input_dims, dims//8, kernel_size=15, stride=8, padding=7), act_fn,
|
853 |
Conv1d(dims//8, dims//4, kernel_size=7, stride=4, padding=3), act_fn,
|
|
|
863 |
debug=[])
|
864 |
else:
|
865 |
self.rope = None
|
866 |
+
self.sinusoid_pos = lambda length, dims: sinusoids(length, dims, max_tscale=10000)
|
867 |
self.norm = RMSNorm(dims)
|
868 |
|
869 |
def apply_rope_to_features(self, x, layer=None, feature=None):
|
|
|
883 |
if self.use_rope:
|
884 |
x = self.apply_rope_to_features(x, layer=layer)
|
885 |
else:
|
886 |
+
x = x + self.sinusoid_pos(x.shape[1], x.shape[-1]).to(x.device, x.dtype)
|
887 |
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
888 |
return self.norm(x)
|
889 |
|
|
|
911 |
debug=[])
|
912 |
else:
|
913 |
self.rope = None
|
914 |
+
self.sinusoid_pos = lambda length, dims: sinusoids(length, dims, max_tscale=10000)
|
915 |
self.norm = RMSNorm(dims)
|
916 |
|
917 |
def apply_rope_to_features(self, x, layer=None, feature=None):
|
|
|
929 |
if self.use_rope:
|
930 |
x = self.apply_rope_to_features(x, layer=layer)
|
931 |
else:
|
932 |
+
x = x + self.sinusoid_pos(x.shape[1], x.shape[-1]).to(x.device, x.dtype)
|
933 |
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
934 |
+
return self.norm(x)
|
|
|
935 |
|
936 |
class theBridge(nn.Module):
|
937 |
def __init__(self, vocab: int, mels: int, ctx: int, dims: int, head: int, layer: int,
|
938 |
debug: List[str], features: List[str], act: str = "gelu"):
|
939 |
super(theBridge, self).__init__()
|
940 |
|
|
|
|
|
|
|
|
|
941 |
self.debug = debug
|
942 |
self.counter = 0
|
943 |
self.dropout = 0.01
|
|
|
947 |
|
948 |
self.token = nn.Embedding(vocab, dims, device=device, dtype=dtype)
|
949 |
self.positional = nn.Parameter(torch.empty(ctx, dims, device=device, dtype=dtype), requires_grad=True)
|
|
|
950 |
self.blend = nn.Parameter(torch.tensor(0.5, device=device, dtype=dtype), requires_grad=True)
|
951 |
+
self.sinusoid_pos = lambda length, dims: sinusoids(length, dims, max_tscale=10000)
|
952 |
|
953 |
with torch.no_grad():
|
954 |
self.token.weight[0].zero_()
|
955 |
|
956 |
self.block = nn.ModuleList([
|
957 |
+
Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features)
|
958 |
for _ in range(layer)])
|
959 |
|
960 |
self.cross_attn = nn.ModuleList([
|
961 |
+
Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features)
|
962 |
for _ in range(layer)])
|
963 |
|
964 |
self.cross_modal = nn.ModuleList([
|
965 |
+
Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features)
|
966 |
for _ in range(layer)])
|
967 |
|
968 |
mask = torch.tril(torch.ones(ctx, ctx), diagonal=0).unsqueeze(0).unsqueeze(0)
|
969 |
self.register_buffer("mask", mask, persistent=False)
|
|
|
|
|
|
|
970 |
|
971 |
act_fn = get_activation(act)
|
972 |
if features == ["spectrogram", "waveform", "pitch"]:
|
|
|
991 |
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
|
992 |
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)] if "phase" in features else None)})
|
993 |
|
994 |
+
self.norm = RMSNorm(dims)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
995 |
|
996 |
def forward(self, x, enc, layer='decoder', feature=None) -> Tensor:
|
997 |
+
out = {}
|
998 |
+
out.update(enc)
|
999 |
enc = dict_to(enc, device, dtype)
|
1000 |
_text_len = x.shape[1]
|
1001 |
|
1002 |
x = self.token(x) + self.positional[:x.shape[1]]
|
1003 |
+
|
|
|
1004 |
for f in enc:
|
1005 |
if f in self.features:
|
1006 |
xa = enc[f]
|
1007 |
for block in self.blocks[f]:
|
1008 |
xa = block(xa, enc=enc, layer=layer, feature=feature)
|
1009 |
+
xa = xa + self.sinusoid_pos(xa.shape[1], xa.shape[-1]).to(xa.device, xa.dtype)
|
1010 |
+
out[f] = xa
|
1011 |
|
1012 |
+
for block in self.block:
|
1013 |
+
x = block(x, xa=None, mask=self.mask, enc=enc, layer=layer)
|
1014 |
+
if f in self.features:
|
1015 |
+
|
1016 |
+
out = block(x, xa=xa, mask=self.mask, enc=enc, layer=layer)
|
|
|
|
|
1017 |
if self.sequential:
|
1018 |
x = out
|
1019 |
else:
|
1020 |
a = torch.sigmoid(self.blend)
|
1021 |
x = a * out + (1 - a) * x
|
1022 |
+
x = self.token(x) + self.positional[:x.shape[1]]
|
1023 |
+
out[f] = x
|
1024 |
|
1025 |
for block in self.cross_attn:
|
1026 |
+
if f in self.features:
|
1027 |
+
x = block(x, xa=xa, mask=self.mask, enc=enc, layer=layer)
|
1028 |
+
xa = block(xa, xa=x, mask=self.mask, enc=enc, layer=layer)
|
1029 |
+
out = block(x, xa=xa, mask=self.mask, enc=enc, layer=layer)
|
|
|
|
|
|
|
1030 |
if self.sequential:
|
1031 |
x = out
|
1032 |
else:
|
1033 |
a = torch.sigmoid(self.blend)
|
1034 |
x = a * out + (1 - a) * x
|
1035 |
+
x = self.token(x) + self.positional[:x.shape[1]]
|
1036 |
+
out[f] = x
|
1037 |
|
1038 |
for block in self.cross_modal:
|
1039 |
+
if f in self.features:
|
|
|
1040 |
xcat = torch.cat([x, xa], dim=1)
|
1041 |
+
x = block(xcat, xa=None, mask=self.mask, enc=enc, layer=layer)
|
|
|
1042 |
x = x[:, :_text_len]
|
1043 |
+
out[f] = x
|
1044 |
if self.counter < 1 and "encoder" in self.debug:
|
|
|
|
|
|
|
|
|
1045 |
shapes = {k: v.shape for k, v in enc.items()}
|
1046 |
print(f"Step {self.counter}: mode: {list(enc.keys()) }: shapes: {shapes}")
|
1047 |
self.counter += 1
|
1048 |
+
|
1049 |
+
x = x @ torch.transpose(self.token.weight.to(dtype), 0, 1).float()
|
1050 |
+
x = self.norm(x)
|
1051 |
+
return x, out
|
1052 |
|
1053 |
class Echo(nn.Module):
|
1054 |
def __init__(self, param: Dimensions):
|
|
|
1103 |
else:
|
1104 |
feature = "spectrogram"
|
1105 |
|
1106 |
+
out, logits = self.processor(input_ids, enc, feature)
|
1107 |
+
self.out=out
|
1108 |
|
1109 |
loss = None
|
1110 |
if labels is not None:
|
|
|
1216 |
"eos_token_id": self.eos_token_id,
|
1217 |
})
|
1218 |
return Config()
|
1219 |
+
|
1220 |
def setup_tokenizer(token: str):
|
1221 |
from tokenizers import Tokenizer
|
1222 |
tokenizer = Tokenizer.from_file("./tokenizer.json")
|
|
|
1244 |
results.append(tokenizer.decode(ids))
|
1245 |
return results
|
1246 |
|
|
|
1247 |
def save_pretrained(save_dir):
|
1248 |
os.makedirs(save_dir, exist_ok=True)
|
1249 |
tokenizer.save(f"{save_dir}/tokenizer.json")
|
|
|
1285 |
|
1286 |
return sp_mel, ap_mel
|
1287 |
|
1288 |
+
def extract_features(batch, tokenizer, waveform=False, spec=True, f0=True, f0t=True, pitch=False, harmonics=False, sample_rate=16000, hop_length=256, mode="mean", debug=False, **dataset_config):
|
|
|
1289 |
dataset_config = {
|
1290 |
"hop_length": 256,
|
1291 |
"f_min": 150,
|
|
|
1300 |
"mel_scale": "htk",
|
1301 |
"norm": None,
|
1302 |
"normalized": False,
|
1303 |
+
}
|
1304 |
|
1305 |
audio = batch["audio"]
|
1306 |
sr = audio["sampling_rate"]
|
|
|
1307 |
labels = tokenizer.encode(batch["transcription"])
|
1308 |
|
1309 |
+
wav = wavnp = f0_np = t = None
|
1310 |
+
spectrogram = f0_tensor = f0t_tensor = harmonic = aperiodic = None
|
1311 |
+
|
1312 |
+
if waveform or spec or f0 or f0t or harmonics:
|
1313 |
wav = load_wave(wave_data=audio, sample_rate=sr)
|
1314 |
+
wavnp = wav.numpy().astype(np.float64)
|
|
|
1315 |
|
1316 |
if spec:
|
1317 |
+
transform = torchaudio.transforms.MelSpectrogram(**dataset_config)
|
1318 |
+
mel_spectrogram = transform(wav)
|
1319 |
log_mel = torch.clamp(mel_spectrogram, min=1e-10).log10()
|
1320 |
log_mel = torch.maximum(log_mel, log_mel.max() - 8.0)
|
1321 |
+
spectrogram = (log_mel + 4.0) / 4.0
|
1322 |
+
spectrogram = torch.tensor(spectrogram)
|
|
|
|
|
1323 |
|
1324 |
+
if f0 or f0t or harmonics:
|
|
|
1325 |
f0_np, t = pw.dio(wavnp, sample_rate,
|
1326 |
+
frame_period=hop_length / sample_rate * 1000, f0_ceil=500, f0_floor=71.1)
|
1327 |
f0_np = pw.stonemask(wavnp, f0_np, t, sample_rate)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1328 |
|
1329 |
+
if f0:
|
1330 |
+
f0_tensor = torch.from_numpy(f0_np)
|
1331 |
+
f0_tensor = torch.where(f0_tensor == 0.0, torch.zeros_like(f0_tensor), (f0_tensor - 71.0) / (500.0 - 71.0))
|
1332 |
+
|
1333 |
+
if f0t:
|
1334 |
+
audio_duration = len(wavnp) / sample_rate
|
1335 |
+
T = len(labels)
|
1336 |
+
tok_dur_sec = audio_duration / T
|
1337 |
+
token_starts = np.arange(T) * tok_dur_sec
|
1338 |
+
token_ends = token_starts + tok_dur_sec
|
1339 |
+
start_idx = np.searchsorted(t, token_starts, side="left")
|
1340 |
+
end_idx = np.searchsorted(t, token_ends, side="right")
|
1341 |
+
pitch_tok = np.zeros(T, dtype=np.float32)
|
1342 |
+
for i in range(T):
|
1343 |
+
lo, hi = start_idx[i], max(start_idx[i]+1, end_idx[i])
|
1344 |
+
segment = f0_np[lo:hi]
|
1345 |
+
if mode == "mean":
|
1346 |
+
pitch_tok[i] = segment.mean()
|
1347 |
+
elif mode == "median":
|
1348 |
+
pitch_tok[i] = np.median(segment)
|
1349 |
+
else:
|
1350 |
+
pitch_tok[i] = segment[-1]
|
1351 |
+
pitch_tok[pitch_tok < 100.0] = 0.0
|
1352 |
+
bos_pitch = pitch_tok[0] if len(pitch_tok) > 0 else 0.0
|
1353 |
+
f0t_tensor = torch.from_numpy(np.concatenate([[bos_pitch], pitch_tok]))
|
1354 |
+
f0t_tensor = torch.where(f0t_tensor == 0.0, torch.zeros_like(f0t_tensor), (f0t_tensor - 71.0) / (500.0 - 71.0))
|
1355 |
+
|
1356 |
+
if harmonics:
|
1357 |
+
spnp = pw.cheaptrick(wavnp, f0_np, t, sample_rate, fft_size=256)
|
1358 |
+
apnp = pw.d4c(wavnp, f0_np, t, sample_rate, fft_size=256)
|
1359 |
+
harmonic = torch.from_numpy(spnp)
|
1360 |
+
aperiodic = torch.from_numpy(apnp)
|
1361 |
+
harmonic = harmonic[:, :128].contiguous().T
|
1362 |
+
aperiodic = aperiodic[:, :128].contiguous().T
|
1363 |
+
harmonic = torch.where(harmonic == 0.0, torch.zeros_like(harmonic), harmonic / 1.0)
|
1364 |
+
aperiodic = torch.where(aperiodic == 0.0, torch.zeros_like(aperiodic), aperiodic / 1.0)
|
1365 |
|
1366 |
if debug:
|
1367 |
+
print(f"['f0']: {f0_tensor.shape if f0_tensor is not None else None}")
|
1368 |
+
print(f"['f0t']: {f0t_tensor.shape if f0t_tensor is not None else None}")
|
1369 |
+
print(f"['harmonic']: {harmonic.shape if harmonic is not None else None}")
|
1370 |
+
print(f"['aperiodic']: {aperiodic.shape if aperiodic is not None else None}")
|
1371 |
+
print(f"['spectrogram']: {spectrogram.shape if spectrogram is not None else None}")
|
1372 |
+
print(f"['waveform']: {wav.shape if wav is not None else None}")
|
1373 |
+
print(f"['labels']: {len(labels) if labels is not None else None}")
|
1374 |
|
1375 |
return {
|
1376 |
+
"waveform": wav if waveform else None,
|
1377 |
+
"spectrogram": spectrogram if spec else None,
|
1378 |
+
"f0": f0_tensor if f0 else None,
|
1379 |
+
"f0t": f0t_tensor if f0t else None,
|
1380 |
+
"harmonic": harmonic if harmonics else None,
|
1381 |
+
"aperiodic": aperiodic if harmonics else None,
|
1382 |
"labels": labels,
|
|
|
|
|
|
|
1383 |
}
|
1384 |
|
1385 |
+
def prepare_datasets(tokenizer, token, sanity_check=False, sample_rate=16000, streaming=False, **dataset_config):
|
1386 |
|
1387 |
if sanity_check:
|
1388 |
test = load_dataset(
|
1389 |
+
"google/fleurs", "en_us", token=token, split="test", trust_remote_code=True
|
1390 |
+
).cast_column("audio", Audio(sampling_rate=sample_rate)).take(1)
|
|
|
1391 |
dataset = test.map(
|
1392 |
lambda x: extract_features(x, tokenizer, **dataset_config),
|
1393 |
remove_columns=test.column_names)
|
|
|
1394 |
train_dataset = dataset
|
1395 |
test_dataset = dataset
|
1396 |
+
return train_dataset, test_dataset
|
1397 |
else:
|
1398 |
|
1399 |
cache_dir = "./processed_datasets"
|
|
|
1412 |
len(x["audio"]["array"]) > 0 and
|
1413 |
len(x["audio"]["array"]) < 2048 * 160)
|
1414 |
|
1415 |
+
raw_train = load_dataset("google/fleurs", "en_us", token=token, split="train", trust_remote_code=True, streaming=streaming)
|
1416 |
+
raw_test = load_dataset("google/fleurs", "en_us", token=token, split="test", trust_remote_code=True, streaming=streaming)
|
|
|
|
|
1417 |
|
1418 |
raw_train = raw_train.filter(filter_func)
|
1419 |
raw_test = raw_test.filter(filter_func)
|
|
|
1428 |
lambda x: extract_features(x, tokenizer, **dataset_config),
|
1429 |
remove_columns=raw_test.column_names)
|
1430 |
|
1431 |
+
train_dataset.save_to_disk(cache_file_train) if sanity_check or streaming is False else None
|
1432 |
+
test_dataset.save_to_disk(cache_file_test) if sanity_check or streaming is False else None
|
1433 |
return train_dataset, test_dataset
|
1434 |
|
1435 |
@dataclass
|
|
|
1511 |
total_words += len(ref_words)
|
1512 |
return (total_errors / total_words) * 100 if total_words > 0 else 0.0
|
1513 |
|
1514 |
+
def clean_ids(ids, pad_token_id=0, bos_token_id=1, eos_token_id=2):
|
1515 |
if isinstance(ids, torch.Tensor):
|
1516 |
ids = ids.tolist()
|
1517 |
+
return [int(id) for id in ids if id != -100 and id != pad_token_id and id != bos_token_id and id != eos_token_id]
|
1518 |
|
1519 |
+
def clean_batch(batch_ids, pad_token_id=0, bos_token_id=1, eos_token_id=2):
|
1520 |
+
return [clean_ids(seq, pad_token_id, bos_token_id, eos_token_id) for seq in batch_ids]
|
1521 |
|
1522 |
def compute_metrics(pred, tokenizer=None, model=None, print_pred=False, num_samples=0, optimizer=None, scheduler=None):
|
|
|
1523 |
label_ids = pred.label_ids
|
1524 |
pred_ids = pred.predictions[0]
|
1525 |
+
label_ids = clean_batch(label_ids)
|
1526 |
+
pred_ids = clean_batch(pred_ids)
|
1527 |
+
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
|
1528 |
+
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
1529 |
|
1530 |
if print_pred:
|
1531 |
for i in range(min(num_samples, len(pred_ids))):
|
|
|
1542 |
else:
|
1543 |
trainable_params = 0.0
|
1544 |
efficiency_score = 0.0
|
1545 |
+
return { "wer": float(wer), "efficiency_score": float(efficiency_score)}
|
1546 |
+
|
1547 |
+
def preprocess_logits_for_metrics(logits, labels):
|
1548 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
1549 |
+
labels = torch.where(labels == -100, 0, labels)
|
1550 |
+
pred_ids = torch.where(pred_ids == -100, 0, pred_ids)
|
1551 |
+
return pred_ids, labels
|
1552 |
|
1553 |
def main():
|
1554 |
token = ""
|
1555 |
log_dir = os.path.join('./output/logs', datetime.now().strftime('%m-%d_%H_%M_%S'))
|
1556 |
os.makedirs(log_dir, exist_ok=True)
|
1557 |
tokenizer = setup_tokenizer(token)
|
1558 |
+
train_dataset, test_dataset = prepare_datasets(
|
1559 |
+
tokenizer,
|
1560 |
+
token,
|
1561 |
+
sanity_check=False,
|
1562 |
+
|
1563 |
+
)
|
1564 |
|
1565 |
param = Dimensions(
|
1566 |
vocab=40000,
|
|
|
1570 |
head=4,
|
1571 |
layer=4,
|
1572 |
act="swish",
|
1573 |
+
debug={"radius", "encoder"},
|
1574 |
features = ["spectrogram"],
|
1575 |
)
|
1576 |
|
|
|
1589 |
logging_steps=10,
|
1590 |
logging_dir=log_dir,
|
1591 |
eval_strategy="steps",
|
1592 |
+
save_strategy="no",
|
1593 |
report_to=["tensorboard"],
|
1594 |
push_to_hub=False,
|
1595 |
disable_tqdm=False,
|
1596 |
save_total_limit=1,
|
1597 |
label_names=["labels"],
|
1598 |
save_safetensors=False,
|
1599 |
+
eval_on_start=True,
|
1600 |
batch_eval_metrics=False,
|
1601 |
)
|
1602 |
from functools import partial
|
1603 |
metrics_fn = partial(compute_metrics,
|
1604 |
print_pred=True,
|
1605 |
+
num_samples=2,
|
1606 |
tokenizer=tokenizer, model=model)
|
1607 |
|
1608 |
optimizer = torch.optim.AdamW(model.parameters(), lr=0.00025, eps=1e-8, weight_decay=0.025, betas=(0.9, 0.999),
|
|
|
1616 |
train_dataset=train_dataset,
|
1617 |
eval_dataset=test_dataset,
|
1618 |
data_collator=DataCollator(tokenizer=tokenizer),
|
1619 |
+
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
|
1620 |
compute_metrics=metrics_fn,
|
1621 |
optimizers=(optimizer, scheduler)
|
1622 |
)
|
1623 |
+
print(tokenizer.pad_token_id, tokenizer.bos_token_id, tokenizer.eos_token_id)
|
1624 |
model.init_weights()
|
1625 |
trainer.train()
|
1626 |
|