Update README.md
Browse files
README.md
CHANGED
@@ -66,7 +66,8 @@ theta = f0_mean + self.theta
|
|
66 |
|
67 |
freqs = (theta / 220.0) * 700 * (torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 8000/700)), self.dim // 2) / 2595) - 1) / 1000
|
68 |
## This seems to give superior results compared to the standard freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim)).
|
69 |
-
## I thought a mel-scale version might be more perceptually meaningful for audio..
|
|
|
70 |
|
71 |
freqs = t[:, None] * freqs[None, :] # dont repeat or use some other method here
|
72 |
|
|
|
66 |
|
67 |
freqs = (theta / 220.0) * 700 * (torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 8000/700)), self.dim // 2) / 2595) - 1) / 1000
|
68 |
## This seems to give superior results compared to the standard freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim)).
|
69 |
+
## I thought a mel-scale version might be more perceptually meaningful for audio..
|
70 |
+
## Using mel-scale to create a perceptually-relevant distance metric.
|
71 |
|
72 |
freqs = t[:, None] * freqs[None, :] # dont repeat or use some other method here
|
73 |
|