Create model_simple.py
Browse files- model_simple.py +448 -0
model_simple.py
ADDED
|
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import math
|
| 3 |
+
import warnings
|
| 4 |
+
import logging
|
| 5 |
+
from itertools import chain
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn.functional as feature
|
| 8 |
+
from torch import nn, Tensor
|
| 9 |
+
from tensordict import TensorDict
|
| 10 |
+
from typing import Optional, Dict, Union, List, Tuple
|
| 11 |
+
import numpy as np
|
| 12 |
+
from functools import partial
|
| 13 |
+
from datetime import datetime
|
| 14 |
+
from tensordict import TensorDict
|
| 15 |
+
from transformers.trainer_seq2seq import Seq2SeqTrainer
|
| 16 |
+
from transformers.training_args_seq2seq import Seq2SeqTrainingArguments
|
| 17 |
+
from echoutils import *
|
| 18 |
+
|
| 19 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 20 |
+
dtype = torch.float32
|
| 21 |
+
warnings.filterwarnings("ignore")
|
| 22 |
+
logging.basicConfig(level=logging.ERROR)
|
| 23 |
+
|
| 24 |
+
@dataclass
|
| 25 |
+
class Dimensions:
|
| 26 |
+
vocab: int
|
| 27 |
+
mels: int
|
| 28 |
+
ctx: int
|
| 29 |
+
dims: int
|
| 30 |
+
head: int
|
| 31 |
+
layer: int
|
| 32 |
+
act: str
|
| 33 |
+
|
| 34 |
+
class rotary(nn.Module):
|
| 35 |
+
def __init__(self, dims, head):
|
| 36 |
+
super(rotary, self).__init__()
|
| 37 |
+
self.dims = dims
|
| 38 |
+
self.head = head
|
| 39 |
+
self.head_dim = dims // head
|
| 40 |
+
self.theta = nn.Parameter((torch.tensor(36000, device=device, dtype=dtype)), requires_grad=True)
|
| 41 |
+
|
| 42 |
+
def forward(self, x=None) -> Tensor:
|
| 43 |
+
freqs = (self.theta / 220.0) * 700 * (
|
| 44 |
+
torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 8000/700)),
|
| 45 |
+
self.head_dim // 2, device=device, dtype=dtype) / 2595) - 1) / 1000
|
| 46 |
+
t = torch.arange(x, device=device, dtype=dtype) # type: ignore
|
| 47 |
+
freqs = t[:, None] * freqs
|
| 48 |
+
freqs=torch.polar(torch.ones_like(freqs), freqs)
|
| 49 |
+
return freqs.unsqueeze(0)
|
| 50 |
+
|
| 51 |
+
@staticmethod
|
| 52 |
+
def apply_rotary(x, freqs):
|
| 53 |
+
x1 = x[..., :freqs.shape[-1]*2]
|
| 54 |
+
x2 = x[..., freqs.shape[-1]*2:]
|
| 55 |
+
orig_shape = x1.shape
|
| 56 |
+
if x1.ndim == 2:
|
| 57 |
+
x1 = x1.unsqueeze(0)
|
| 58 |
+
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
|
| 59 |
+
x1 = torch.view_as_complex(x1) * freqs
|
| 60 |
+
x1 = torch.view_as_real(x1).flatten(-2)
|
| 61 |
+
x1 = x1.view(orig_shape)
|
| 62 |
+
return torch.cat([x1.type_as(x), x2], dim=-1)
|
| 63 |
+
|
| 64 |
+
class MultiheadA(nn.Module):
|
| 65 |
+
|
| 66 |
+
def __init__(self, dims: int, head: int, debug: List[str] = []):
|
| 67 |
+
super(MultiheadA, self).__init__()
|
| 68 |
+
|
| 69 |
+
self.dims = dims
|
| 70 |
+
self.head = head
|
| 71 |
+
self.head_dim = dims // head
|
| 72 |
+
self.debug = debug
|
| 73 |
+
|
| 74 |
+
self.q = nn.Linear(dims, dims).to(device, dtype)
|
| 75 |
+
self.k = nn.Linear(dims, dims, bias=False).to(device, dtype)
|
| 76 |
+
self.v = nn.Linear(dims, dims).to(device, dtype)
|
| 77 |
+
self.o = nn.Linear(dims, dims).to(device, dtype)
|
| 78 |
+
self.rope = rotary(dims=dims, head=head)
|
| 79 |
+
|
| 80 |
+
def forward(self, x: Tensor, xa = None, mask = None):
|
| 81 |
+
scale = (self.dims // self.head) ** -0.25
|
| 82 |
+
q = self.q(x)
|
| 83 |
+
k = self.k(x if xa is None else xa)
|
| 84 |
+
v = self.v(x if xa is None else xa)
|
| 85 |
+
batch, ctx, dims = q.shape
|
| 86 |
+
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
| 87 |
+
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
| 88 |
+
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
| 89 |
+
q = self.rope.apply_rotary(q, (self.rope(q.shape[2]))) # type: ignore
|
| 90 |
+
k = self.rope.apply_rotary(k, (self.rope(k.shape[2]))) # type: ignore
|
| 91 |
+
a = scaled_dot_product_attention(q, k, v, is_causal=mask is not None and ctx > 1)
|
| 92 |
+
out = a.permute(0, 2, 1, 3).flatten(start_dim=2)
|
| 93 |
+
qk = None
|
| 94 |
+
return self.o(out), qk
|
| 95 |
+
|
| 96 |
+
class t_gate(nn.Module):
|
| 97 |
+
def __init__(self, dims, num_types=4):
|
| 98 |
+
super().__init__()
|
| 99 |
+
self.gate_projections = nn.ModuleList([
|
| 100 |
+
nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
| 101 |
+
for _ in range(num_types)])
|
| 102 |
+
self.type_classifier = nn.Sequential(
|
| 103 |
+
Linear(dims, num_types),
|
| 104 |
+
nn.Softmax(dim=-1))
|
| 105 |
+
def forward(self, x):
|
| 106 |
+
type_probs = self.type_classifier(x)
|
| 107 |
+
gates = torch.stack([gate(x) for gate in self.gate_projections], dim=-1)
|
| 108 |
+
comb_gate = torch.sum(gates * type_probs.unsqueeze(2), dim=-1)
|
| 109 |
+
return comb_gate
|
| 110 |
+
|
| 111 |
+
class Residual(nn.Module):
|
| 112 |
+
_seen = set()
|
| 113 |
+
def __init__(self, dims: int, head: int, ctx: int, act: str = "silu"):
|
| 114 |
+
|
| 115 |
+
super().__init__()
|
| 116 |
+
|
| 117 |
+
self.dims = dims
|
| 118 |
+
self.head = head
|
| 119 |
+
self.ctx = ctx
|
| 120 |
+
self.head_dim = dims // head
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
self.blend = nn.Parameter(torch.tensor(0.5))
|
| 124 |
+
act_fn = get_activation(act)
|
| 125 |
+
self.attn = MultiheadA(dims, head)
|
| 126 |
+
mlp = dims * 4
|
| 127 |
+
self.mlp = nn.Sequential(Linear(dims, mlp), act_fn, Linear(mlp, dims))
|
| 128 |
+
self.t_gate = t_gate(dims=dims, num_types=4*2)
|
| 129 |
+
|
| 130 |
+
self.lna = RMSNorm(dims)
|
| 131 |
+
self.lnb = RMSNorm(dims)
|
| 132 |
+
self.lnc = RMSNorm(dims)
|
| 133 |
+
|
| 134 |
+
def forward(self, x, xa=None, mask=None) -> Tensor:
|
| 135 |
+
x = x + self.attn(self.lna(x), xa=None, mask=mask)[0]
|
| 136 |
+
xb = x
|
| 137 |
+
if xa is not None:
|
| 138 |
+
x = x + self.attn(self.lnb(x), xa=xa, mask=None)[0] # type: ignore
|
| 139 |
+
b = torch.sigmoid(self.blend)
|
| 140 |
+
x = b * xb + (1 - b) * x
|
| 141 |
+
normx = self.lnc(x)
|
| 142 |
+
mlp_out = self.mlp(normx)
|
| 143 |
+
gate = self.t_gate(normx)
|
| 144 |
+
x = x + gate * mlp_out
|
| 145 |
+
return x
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
class feature_encoder(nn.Module):
|
| 149 |
+
def __init__(self, mels, dims, head, layer, act="gelu"):
|
| 150 |
+
super().__init__()
|
| 151 |
+
|
| 152 |
+
self.dims = dims
|
| 153 |
+
self.head = head
|
| 154 |
+
self.head_dim = dims // head
|
| 155 |
+
self.dropout = 0.01
|
| 156 |
+
act_fn = get_activation(act)
|
| 157 |
+
|
| 158 |
+
# pitch
|
| 159 |
+
# self.encoder = nn.Sequential(
|
| 160 |
+
# Conv1d(1, dims, kernel_size=3, stride=1, padding=1), act_fn,
|
| 161 |
+
# Conv1d(dims, dims, kernel_size=3, stride=1, padding=1), act_fn,
|
| 162 |
+
# Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims), act_fn)
|
| 163 |
+
|
| 164 |
+
# spectrogram
|
| 165 |
+
self.encoder = nn.Sequential(
|
| 166 |
+
Conv1d(mels, dims, kernel_size=3, stride=1, padding=1), act_fn,
|
| 167 |
+
Conv1d(dims, dims, kernel_size=3, stride=1, padding=1), act_fn,
|
| 168 |
+
Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims), act_fn)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
self.positional = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)
|
| 172 |
+
self.norm = RMSNorm(dims)
|
| 173 |
+
|
| 174 |
+
def forward(self, x, xa=None, mask=None, max_tscale=36000):
|
| 175 |
+
if x.dim() == 2:
|
| 176 |
+
x = x.unsqueeze(0)
|
| 177 |
+
# x = self.pitch(x).permute(0, 2, 1)
|
| 178 |
+
x = self.encoder(x).permute(0, 2, 1)
|
| 179 |
+
max_tscale = x.shape[1] * 1000 if max_tscale is None else max_tscale
|
| 180 |
+
x = x + self.positional(x.shape[1], x.shape[-1], max_tscale).to(device, dtype)
|
| 181 |
+
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
| 182 |
+
x = self.norm(x)
|
| 183 |
+
return x
|
| 184 |
+
|
| 185 |
+
class processor(nn.Module):
|
| 186 |
+
def __init__(self, vocab: int, mels: int, ctx: int, dims: int, head: int, layer: int, act: str = "gelu"):
|
| 187 |
+
super(processor, self).__init__()
|
| 188 |
+
self.dims = dims
|
| 189 |
+
self.head = head
|
| 190 |
+
self.layer = layer
|
| 191 |
+
self.ctx = ctx
|
| 192 |
+
self.act = act
|
| 193 |
+
self.dropout = 0.01
|
| 194 |
+
act_fn = get_activation(act)
|
| 195 |
+
|
| 196 |
+
self.token = nn.Embedding(vocab, dims, device=device, dtype=dtype)
|
| 197 |
+
self.positional = nn.Parameter(torch.empty(ctx, dims, device=device, dtype=dtype), requires_grad=True)
|
| 198 |
+
self.blend = nn.Parameter(torch.tensor(0.5, device=device, dtype=dtype), requires_grad=True)
|
| 199 |
+
|
| 200 |
+
self.bA = nn.ModuleList(
|
| 201 |
+
[feature_encoder(mels=mels, dims=dims, head=head, layer=layer, act=act_fn)] +
|
| 202 |
+
[Residual(ctx=ctx, dims=dims, head=head, act=act_fn) for _ in range(layer)])
|
| 203 |
+
self.bB = nn.ModuleList([
|
| 204 |
+
Residual(ctx=ctx, dims=dims, head=head, act=act_fn)
|
| 205 |
+
for _ in range(layer)])
|
| 206 |
+
|
| 207 |
+
mask = torch.empty(ctx, ctx).fill_(-np.inf).triu_(1)
|
| 208 |
+
self.register_buffer("mask", mask, persistent=False)
|
| 209 |
+
self.norm = nn.LayerNorm(dims, device=device, dtype=dtype)
|
| 210 |
+
|
| 211 |
+
def forward(self, x, xa, sequential=False) -> Tensor:
|
| 212 |
+
x = self.token(x.long()) + self.positional[:x.shape[1]]
|
| 213 |
+
|
| 214 |
+
for b in chain(self.bA or []):
|
| 215 |
+
xa = b(x=xa, xa=None, mask=None)
|
| 216 |
+
|
| 217 |
+
for b in chain(self.bB or []):
|
| 218 |
+
x = b(x=x, xa=None, mask=self.mask)
|
| 219 |
+
xc = b(x, xa=xa, mask=None)
|
| 220 |
+
if sequential:
|
| 221 |
+
x = xc
|
| 222 |
+
else:
|
| 223 |
+
a = torch.sigmoid(self.blend)
|
| 224 |
+
x = a * xc + (1 - a) * x
|
| 225 |
+
|
| 226 |
+
x = self.norm(x)
|
| 227 |
+
x = x @ torch.transpose(self.token.weight.to(dtype), 0, 1).float()
|
| 228 |
+
return x
|
| 229 |
+
|
| 230 |
+
class Echo(nn.Module):
|
| 231 |
+
def __init__(self, param: Dimensions):
|
| 232 |
+
super().__init__()
|
| 233 |
+
self.param = param
|
| 234 |
+
|
| 235 |
+
self.processor = processor(
|
| 236 |
+
vocab=param.vocab,
|
| 237 |
+
mels=param.mels,
|
| 238 |
+
ctx=param.ctx,
|
| 239 |
+
dims=param.dims,
|
| 240 |
+
head=param.head,
|
| 241 |
+
layer=param.layer,
|
| 242 |
+
act=param.act,
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
def forward(self,
|
| 246 |
+
labels=None,
|
| 247 |
+
input_ids=None,
|
| 248 |
+
spectrogram: Optional[torch.Tensor]=None,
|
| 249 |
+
pitch: Optional[torch.Tensor]=None,
|
| 250 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
| 251 |
+
|
| 252 |
+
enc= {}
|
| 253 |
+
if pitch is not None:
|
| 254 |
+
xa = pitch
|
| 255 |
+
enc["pitch"] = pitch
|
| 256 |
+
if spectrogram is not None:
|
| 257 |
+
xa = spectrogram
|
| 258 |
+
enc["spectrogram"] = spectrogram
|
| 259 |
+
|
| 260 |
+
x = input_ids
|
| 261 |
+
logits = self.processor(x, xa)
|
| 262 |
+
|
| 263 |
+
loss = None
|
| 264 |
+
if labels is not None:
|
| 265 |
+
loss = torch.nn.functional.cross_entropy(
|
| 266 |
+
logits.view(-1, logits.shape[-1]), labels.view(-1), ignore_index=0)
|
| 267 |
+
return {"logits": logits, "loss": loss}
|
| 268 |
+
|
| 269 |
+
@property
|
| 270 |
+
def device(self):
|
| 271 |
+
return next(self.parameters()).device
|
| 272 |
+
@property
|
| 273 |
+
def dtype(self):
|
| 274 |
+
return next(self.parameters()).dtype
|
| 275 |
+
|
| 276 |
+
def _init_weights(self, module):
|
| 277 |
+
std = 0.02
|
| 278 |
+
self.init_counts = {
|
| 279 |
+
"Linear": 0, "Conv1d": 0, "LayerNorm": 0, "RMSNorm": 0,
|
| 280 |
+
"Conv2d": 0, "processor": 0, "Echo": 0,
|
| 281 |
+
"Residual": 0, "MultiheadA": 0,
|
| 282 |
+
"MultiheadC": 0, "MultiheadD": 0, "FEncoder": 0,
|
| 283 |
+
"WEncoder": 0, "PEncoder": 0, "feature_encoder": 0}
|
| 284 |
+
|
| 285 |
+
for name, module in self.named_modules():
|
| 286 |
+
if isinstance(module, RMSNorm):
|
| 287 |
+
nn.init.ones_(module.weight)
|
| 288 |
+
self.init_counts["RMSNorm"] += 1
|
| 289 |
+
elif isinstance(module, nn.Linear):
|
| 290 |
+
if module.weight is not None:
|
| 291 |
+
nn.init.xavier_uniform_(module.weight)
|
| 292 |
+
if module.bias is not None:
|
| 293 |
+
nn.init.zeros_(module.bias)
|
| 294 |
+
self.init_counts["Linear"] += 1
|
| 295 |
+
elif isinstance(module, Conv1d):
|
| 296 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
| 297 |
+
if module.bias is not None:
|
| 298 |
+
nn.init.zeros_(module.bias)
|
| 299 |
+
self.init_counts["Conv1d"] += 1
|
| 300 |
+
elif isinstance(module, Conv2d):
|
| 301 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
| 302 |
+
if module.bias is not None:
|
| 303 |
+
nn.init.zeros_(module.bias)
|
| 304 |
+
self.init_counts["Conv2d"] += 1
|
| 305 |
+
elif isinstance(module, MultiheadA):
|
| 306 |
+
self.init_counts["MultiheadA"] += 1
|
| 307 |
+
elif isinstance(module, Residual):
|
| 308 |
+
self.init_counts["Residual"] += 1
|
| 309 |
+
elif isinstance(module, feature_encoder):
|
| 310 |
+
self.init_counts["feature_encoder"] += 1
|
| 311 |
+
elif isinstance(module, processor):
|
| 312 |
+
self.init_counts["processor"] += 1
|
| 313 |
+
elif isinstance(module, Echo):
|
| 314 |
+
self.init_counts["Echo"] += 1
|
| 315 |
+
|
| 316 |
+
def init_weights(self):
|
| 317 |
+
print("Initializing model weights...")
|
| 318 |
+
self.apply(self._init_weights)
|
| 319 |
+
print("Initialization summary:")
|
| 320 |
+
for module_type, count in self.init_counts.items():
|
| 321 |
+
if count > 0:
|
| 322 |
+
print(f"{module_type}: {count}")
|
| 323 |
+
|
| 324 |
+
def main():
|
| 325 |
+
token = ""
|
| 326 |
+
log_dir = os.path.join('D:/newmodel/output/logs', datetime.now().strftime('%m-%d_%H_%M_%S'))
|
| 327 |
+
os.makedirs(log_dir, exist_ok=True)
|
| 328 |
+
tokenizer = setup_tokenizer("D:/newmodel/mod5/tokenizer.json")
|
| 329 |
+
|
| 330 |
+
sanity_check = False
|
| 331 |
+
streaming = False
|
| 332 |
+
load_saved = False
|
| 333 |
+
save_dataset = False
|
| 334 |
+
cache_dir = None
|
| 335 |
+
extract_args = None
|
| 336 |
+
|
| 337 |
+
extract_args = {
|
| 338 |
+
"waveform": False,
|
| 339 |
+
"spec": False,
|
| 340 |
+
"f0": False,
|
| 341 |
+
"f0t": False,
|
| 342 |
+
"pitch": True,
|
| 343 |
+
"harmonics": False,
|
| 344 |
+
"aperiodics": False,
|
| 345 |
+
"phase_mod": False,
|
| 346 |
+
"crepe": False,
|
| 347 |
+
"sample_rate": 16000,
|
| 348 |
+
"hop_length": 256,
|
| 349 |
+
"mode": "mean",
|
| 350 |
+
"debug": False,
|
| 351 |
+
}
|
| 352 |
+
|
| 353 |
+
param = Dimensions(
|
| 354 |
+
vocab=40000,
|
| 355 |
+
mels=128,
|
| 356 |
+
ctx=2048,
|
| 357 |
+
dims=512,
|
| 358 |
+
head=4,
|
| 359 |
+
layer=4,
|
| 360 |
+
act="swish",
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
train_dataset, test_dataset = prepare_datasets(tokenizer, token, sanity_check=sanity_check, sample_rate=16000, streaming=streaming,
|
| 364 |
+
load_saved=load_saved, save_dataset=save_dataset, cache_dir=cache_dir, extract_args=extract_args, max_ctx=param.ctx)
|
| 365 |
+
|
| 366 |
+
model = Echo(param).to('cuda')
|
| 367 |
+
print(f"Trainable parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad):,}")
|
| 368 |
+
print(f"Total parameters: {sum(p.numel() for p in model.parameters()):,}")
|
| 369 |
+
|
| 370 |
+
from functools import partial
|
| 371 |
+
metrics_fn = partial(compute_metrics, print_pred=True, num_samples=1,
|
| 372 |
+
tokenizer=tokenizer, model=model)
|
| 373 |
+
|
| 374 |
+
if sanity_check:
|
| 375 |
+
training_args = Seq2SeqTrainingArguments(
|
| 376 |
+
output_dir=log_dir,
|
| 377 |
+
per_device_train_batch_size=1,
|
| 378 |
+
per_device_eval_batch_size=1,
|
| 379 |
+
max_steps=10,
|
| 380 |
+
eval_steps=5,
|
| 381 |
+
save_steps=0,
|
| 382 |
+
warmup_steps=0,
|
| 383 |
+
logging_steps=1,
|
| 384 |
+
logging_dir=log_dir,
|
| 385 |
+
eval_strategy="steps",
|
| 386 |
+
save_strategy="no",
|
| 387 |
+
logging_strategy="no",
|
| 388 |
+
report_to=["tensorboard"],
|
| 389 |
+
push_to_hub=False,
|
| 390 |
+
save_total_limit=1,
|
| 391 |
+
label_names=["labels"],
|
| 392 |
+
save_safetensors=False,
|
| 393 |
+
eval_on_start=False,
|
| 394 |
+
batch_eval_metrics=False,
|
| 395 |
+
disable_tqdm=False,
|
| 396 |
+
include_tokens_per_second=True,
|
| 397 |
+
include_num_input_tokens_seen=True,
|
| 398 |
+
learning_rate=1e-7,
|
| 399 |
+
weight_decay=0.01,
|
| 400 |
+
)
|
| 401 |
+
else:
|
| 402 |
+
training_args = Seq2SeqTrainingArguments(
|
| 403 |
+
output_dir=log_dir,
|
| 404 |
+
per_device_train_batch_size=1,
|
| 405 |
+
per_device_eval_batch_size=1,
|
| 406 |
+
max_steps=1000,
|
| 407 |
+
eval_steps=100,
|
| 408 |
+
save_steps=1000,
|
| 409 |
+
warmup_steps=100,
|
| 410 |
+
logging_steps=10,
|
| 411 |
+
logging_dir=log_dir,
|
| 412 |
+
logging_strategy="steps",
|
| 413 |
+
eval_strategy="steps",
|
| 414 |
+
save_strategy="no",
|
| 415 |
+
report_to=["tensorboard"],
|
| 416 |
+
push_to_hub=False,
|
| 417 |
+
save_total_limit=1,
|
| 418 |
+
label_names=["labels"],
|
| 419 |
+
save_safetensors=False,
|
| 420 |
+
eval_on_start=False,
|
| 421 |
+
batch_eval_metrics=False,
|
| 422 |
+
disable_tqdm=False,
|
| 423 |
+
include_tokens_per_second=True,
|
| 424 |
+
include_num_input_tokens_seen=True,
|
| 425 |
+
learning_rate=0.00025,
|
| 426 |
+
weight_decay=0.025,
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=training_args.learning_rate, eps=1e-8, weight_decay=training_args.weight_decay, betas=(0.9, 0.999),
|
| 430 |
+
amsgrad=False, foreach=False, fused=False, capturable=False, differentiable=False, maximize=False)
|
| 431 |
+
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=training_args.max_steps, eta_min=1e-9, last_epoch=-1)
|
| 432 |
+
|
| 433 |
+
trainer = Seq2SeqTrainer(
|
| 434 |
+
args=training_args,
|
| 435 |
+
model=model,
|
| 436 |
+
train_dataset=train_dataset,
|
| 437 |
+
eval_dataset=test_dataset,
|
| 438 |
+
data_collator=DataCollator(tokenizer=tokenizer),
|
| 439 |
+
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
|
| 440 |
+
compute_metrics=metrics_fn,
|
| 441 |
+
optimizers=(optimizer, scheduler)
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
model.init_weights()
|
| 445 |
+
trainer.train()
|
| 446 |
+
if __name__ == "__main__":
|
| 447 |
+
|
| 448 |
+
main()
|