Delete echoutils.py
Browse files- echoutils.py +0 -1593
echoutils.py
DELETED
@@ -1,1593 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import os
|
3 |
-
import pyworld as pw
|
4 |
-
import numpy as np
|
5 |
-
import torchaudio
|
6 |
-
import torch.nn.functional as F
|
7 |
-
from datasets import load_dataset
|
8 |
-
from datasets import Audio
|
9 |
-
from dataclasses import dataclass
|
10 |
-
from typing import Any, List, Dict
|
11 |
-
import math
|
12 |
-
import matplotlib.pyplot as plt
|
13 |
-
import torch.nn as nn
|
14 |
-
import torch.nn.init as init
|
15 |
-
from torch import Tensor
|
16 |
-
from typing import Any, List, Dict, Optional, Union, Tuple
|
17 |
-
from torch.nn.functional import scaled_dot_product_attention
|
18 |
-
|
19 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
20 |
-
dtype = torch.float32
|
21 |
-
|
22 |
-
# def shape(tensor: torch.Tensor, head: int, head_dim: int, batch: int, ctx: int):
|
23 |
-
# return tensor.view(batch, ctx, head, head_dim).transpose(1, 2).contiguous()
|
24 |
-
|
25 |
-
# def reshape_to_output(attn_output, head: int, head_dim: int, batch: int, ctx: int, dims: int):
|
26 |
-
# return attn_output.permute(0, 2, 1, 3).reshape(batch, ctx, dims).contiguous()
|
27 |
-
|
28 |
-
def shape(self, tensor: torch.Tensor, ctx: int, batch: int):
|
29 |
-
return tensor.view(batch, ctx, self.head, self.head_dim).transpose(1, 2).contiguous()
|
30 |
-
|
31 |
-
def reshape_to_output(self, attn_output, batch, ctx):
|
32 |
-
return attn_output.permute(0, 2, 1, 3).reshape(batch, ctx, self.dims).contiguous()
|
33 |
-
|
34 |
-
def create_attention_mask(batch_size, ctx, is_causal=True, padding_mask=None, device=None):
|
35 |
-
if is_causal:
|
36 |
-
mask = torch.triu(torch.ones((ctx, ctx), device=device), diagonal=0)
|
37 |
-
mask = mask.unsqueeze(0).unsqueeze(0).expand(batch_size, 1, ctx, ctx)
|
38 |
-
else:
|
39 |
-
mask = torch.zeros((batch_size, 1, ctx, ctx), device=device)
|
40 |
-
if padding_mask is not None:
|
41 |
-
padding_mask = padding_mask.unsqueeze(1).unsqueeze(2).bool()
|
42 |
-
mask = mask | (~padding_mask)
|
43 |
-
return mask
|
44 |
-
|
45 |
-
def cos_sim(q: Tensor, k: Tensor, v: Tensor, mask) -> Tensor:
|
46 |
-
q_norm = torch.nn.functional.normalize(q, dim=-1, eps=1e-12)
|
47 |
-
k_norm = torch.nn.functional.normalize(k, dim=-1, eps=1e-12)
|
48 |
-
qk_cosine = torch.matmul(q_norm, k_norm.transpose(-1, -2))
|
49 |
-
qk_cosine = qk_cosine + mask
|
50 |
-
weights = F.softmax(qk_cosine, dim=-1)
|
51 |
-
out = torch.matmul(weights, v)
|
52 |
-
return out
|
53 |
-
|
54 |
-
def rbf_scores(q, k, rbf_sigma=1.0, rbf_ratio=0.0):
|
55 |
-
dot_scores = torch.matmul(q, k.transpose(-1, -2))
|
56 |
-
if rbf_ratio <= 0.0:
|
57 |
-
return dot_scores
|
58 |
-
q_norm = q.pow(2).sum(dim=-1, keepdim=True)
|
59 |
-
k_norm = k.pow(2).sum(dim=-1, keepdim=True)
|
60 |
-
qk = torch.matmul(q, k.transpose(-1, -2))
|
61 |
-
dist_sq = q_norm + k_norm.transpose(-1, -2) - 2 * qk
|
62 |
-
rbf_scores = torch.exp(-dist_sq / (2 * rbf_sigma**2))
|
63 |
-
return (1 - rbf_ratio) * dot_scores + rbf_ratio * rbf_scores
|
64 |
-
|
65 |
-
def sliding_window_mask(q_len, k_len, window, device):
|
66 |
-
# mask[i, j] = 1 if j in [i-window+1, i], else 0
|
67 |
-
idxs = torch.arange(q_len, device=device).unsqueeze(1)
|
68 |
-
jdxs = torch.arange(k_len, device=device).unsqueeze(0)
|
69 |
-
mask = (jdxs >= (idxs - window + 1)) & (jdxs <= idxs)
|
70 |
-
return mask.float() # shape: (q_len, k_len)
|
71 |
-
|
72 |
-
def mask_win(text_ctx, aud_ctx):
|
73 |
-
mask = torch.tril(torch.ones(text_ctx, text_ctx, device=device, dtype=dtype), diagonal=0)
|
74 |
-
audio_mask = torch.tril(torch.ones(text_ctx, aud_ctx - text_ctx, device=device, dtype=dtype))
|
75 |
-
full_mask = torch.cat([mask, audio_mask], dim=-1)
|
76 |
-
return full_mask
|
77 |
-
|
78 |
-
def maskc(ctx, device):
|
79 |
-
return torch.tril(torch.ones(ctx, ctx, device=device, dtype=dtype), diagonal=0)
|
80 |
-
|
81 |
-
def qkv_init(dims: int, head: int):
|
82 |
-
head_dim = dims // head
|
83 |
-
scale = head_dim ** -0.5
|
84 |
-
q = nn.Linear(dims, dims)
|
85 |
-
k = nn.Linear(dims, dims, bias=False)
|
86 |
-
v = nn.Linear(dims, dims)
|
87 |
-
o = nn.Linear(dims, dims)
|
88 |
-
return q, k, v, o, scale
|
89 |
-
|
90 |
-
def create_qkv(q, k, v, x, xa=None, head=8):
|
91 |
-
head_dim = q.out_features // head
|
92 |
-
scale = head_dim ** -0.5
|
93 |
-
q = q(x) * scale
|
94 |
-
k = k(xa if xa is not None else x) * scale
|
95 |
-
v = v(xa if xa is not None else x)
|
96 |
-
batch, ctx, _ = q.shape
|
97 |
-
def _shape(tensor):
|
98 |
-
return tensor.view(batch, ctx, head, head_dim).transpose(1, 2).contiguous()
|
99 |
-
return _shape(q), _shape(k), _shape(v)
|
100 |
-
|
101 |
-
def calculate_attention(q, k, v, mask=None, temperature=1.0, is_causal=True):
|
102 |
-
# q, k, v = create_qkv(q, k, v, dims, head)
|
103 |
-
|
104 |
-
batch, head, ctx, dims = q.shape
|
105 |
-
attn_mask = None
|
106 |
-
if mask is not None:
|
107 |
-
if mask.dim() <= 3:
|
108 |
-
attn_mask = create_attention_mask(
|
109 |
-
batch_size=batch,
|
110 |
-
ctx=ctx,
|
111 |
-
is_causal=is_causal,
|
112 |
-
padding_mask=mask if mask.dim() > 1 else None,
|
113 |
-
device=device)
|
114 |
-
else:
|
115 |
-
attn_mask = mask
|
116 |
-
scaled_q = q
|
117 |
-
if temperature != 1.0 and temperature > 0:
|
118 |
-
scaled_q = q * (1.0 / temperature)**.5
|
119 |
-
a = scaled_dot_product_attention(scaled_q, k, v, attn_mask=attn_mask, is_causal=is_causal if attn_mask is None else False)
|
120 |
-
out = a.permute(0, 2, 1, 3).flatten(start_dim=2)
|
121 |
-
return out, None
|
122 |
-
|
123 |
-
class KVCache(nn.Module):
|
124 |
-
def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim, dtype=torch.bfloat16):
|
125 |
-
super().__init__()
|
126 |
-
cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim)
|
127 |
-
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype))
|
128 |
-
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype))
|
129 |
-
|
130 |
-
def update(self, input_pos, k_val, v_val):
|
131 |
-
# input_pos: [S], k_val: [B, H, S, D]
|
132 |
-
assert input_pos.shape[0] == k_val.shape[2]
|
133 |
-
|
134 |
-
k_out = self.k_cache
|
135 |
-
v_out = self.v_cache
|
136 |
-
k_out[:, :, input_pos] = k_val # pyright: ignore[reportIndexIssue]
|
137 |
-
v_out[:, :, input_pos] = v_val # pyright: ignore[reportIndexIssue]
|
138 |
-
|
139 |
-
return k_out, v_out
|
140 |
-
|
141 |
-
def mel_scale_scalar(freq: float) -> float:
|
142 |
-
return 1127.0 * math.log(1.0 + freq / 700.0)
|
143 |
-
|
144 |
-
def mel_scale(freq: Tensor) -> Tensor:
|
145 |
-
return 1127.0 * (1.0 + freq / 700.0).log()
|
146 |
-
|
147 |
-
def trace_x(func):
|
148 |
-
def wrapper(*args, **kwargs):
|
149 |
-
print(f"Calling {func.__name__}")
|
150 |
-
result = func(*args, **kwargs)
|
151 |
-
if isinstance(result, torch.Tensor):
|
152 |
-
print(f" {func.__name__} returned shape: {result.shape}")
|
153 |
-
return result
|
154 |
-
return wrapper
|
155 |
-
|
156 |
-
def track_x(new_x, operation=""):
|
157 |
-
""" track_x(x, "x") """
|
158 |
-
x_id = [id(new_x)]
|
159 |
-
if new_x is None:
|
160 |
-
return new_x
|
161 |
-
current_id = id(new_x)
|
162 |
-
if current_id != x_id[0]:
|
163 |
-
print(f"x FLOW: {x_id[0]} → {current_id} in {operation}")
|
164 |
-
x_id[0] = current_id
|
165 |
-
else:
|
166 |
-
print(f"x REUSE: {current_id} in {operation}")
|
167 |
-
return new_x
|
168 |
-
|
169 |
-
def track_xa(new_xa, operation=""):
|
170 |
-
""" track_xa(xa, "xa - decoder") """
|
171 |
-
xa_id = [id(new_xa)] if new_xa is not None else [None]
|
172 |
-
if new_xa is None:
|
173 |
-
return new_xa
|
174 |
-
current_id = id(new_xa)
|
175 |
-
if current_id != xa_id[0]:
|
176 |
-
print(f"xa FLOW: {xa_id[0]} → {current_id} in {operation}")
|
177 |
-
xa_id[0] = current_id # pyright: ignore[reportArgumentType, reportCallIssue]
|
178 |
-
else:
|
179 |
-
print(f"xa REUSE: {current_id} in {operation}")
|
180 |
-
return new_xa
|
181 |
-
|
182 |
-
def get_activation(act: str) -> nn.Module:
|
183 |
-
"""Get activation function by name."""
|
184 |
-
act_map = {
|
185 |
-
"gelu": nn.GELU(),
|
186 |
-
"relu": nn.ReLU(),
|
187 |
-
"sigmoid": nn.Sigmoid(),
|
188 |
-
"tanh": nn.Tanh(),
|
189 |
-
"swish": nn.SiLU(),
|
190 |
-
"tanhshrink": nn.Tanhshrink(),
|
191 |
-
"softplus": nn.Softplus(),
|
192 |
-
"softshrink": nn.Softshrink(),
|
193 |
-
"leaky_relu": nn.LeakyReLU(),
|
194 |
-
"elu": nn.ELU()
|
195 |
-
}
|
196 |
-
return act_map.get(act, nn.GELU())
|
197 |
-
|
198 |
-
def get_generation_config(param):
|
199 |
-
return GenerationConfig( # type: ignore
|
200 |
-
max_length=param.text_ctx,
|
201 |
-
pad_token_id=getattr(param, "pad_token_id", 0),
|
202 |
-
bos_token_id=getattr(param, "bos_token_id", 1),
|
203 |
-
eos_token_id=getattr(param, "eos_token_id", 2),
|
204 |
-
do_sample=False,
|
205 |
-
num_beams=1,
|
206 |
-
early_stopping=False,
|
207 |
-
length_penalty=1.0,
|
208 |
-
no_repeat_ngram_size=0,
|
209 |
-
repetition_penalty=1.0,
|
210 |
-
temperature=1.0,
|
211 |
-
decoder_start_token_id=1,
|
212 |
-
is_multilingual=False,
|
213 |
-
use_cache=False,
|
214 |
-
return_timestamps=False)
|
215 |
-
|
216 |
-
# class rotary(nn.Module):
|
217 |
-
# def __init__(self, dims, head, max_ctx=1500, radii=False, debug: List[str] = [], use_pbias=False, axial=False, spec_shape=None):
|
218 |
-
|
219 |
-
# super(rotary, self).__init__()
|
220 |
-
# self.use_pbias = use_pbias
|
221 |
-
# self.dims = dims
|
222 |
-
# self.head = head
|
223 |
-
# self.head_dim = dims // head
|
224 |
-
# self.radii = radii
|
225 |
-
# self.debug = debug
|
226 |
-
# self.counter = 0
|
227 |
-
# self.last_theta = None
|
228 |
-
# self.axial = axial
|
229 |
-
|
230 |
-
# self.bias = nn.Parameter(torch.zeros(max_ctx, dims // 2), requires_grad=True if use_pbias else False)
|
231 |
-
# theta = (torch.tensor(10000, device=device, dtype=dtype))
|
232 |
-
# self.theta = nn.Parameter(theta, requires_grad=True)
|
233 |
-
# self.theta_values = []
|
234 |
-
|
235 |
-
# if axial and spec_shape is not None:
|
236 |
-
# time_frames, freq_bins = spec_shape
|
237 |
-
# self.time_frames = time_frames
|
238 |
-
# self.freq_bins = freq_bins
|
239 |
-
|
240 |
-
# time_theta = 50.0
|
241 |
-
# time_freqs = 1.0 / (time_theta ** (torch.arange(0, dims, 4)[:(dims // 4)].float() / dims))
|
242 |
-
# self.register_buffer('time_freqs', time_freqs)
|
243 |
-
|
244 |
-
# freq_theta = 100.0
|
245 |
-
# freq_freqs = 1.0 / (freq_theta ** (torch.arange(0, dims, 4)[:(dims // 4)].float() / dims))
|
246 |
-
# self.register_buffer('freq_freqs', freq_freqs)
|
247 |
-
|
248 |
-
# def pitch_bias(self, f0):
|
249 |
-
# if f0 is None:
|
250 |
-
# return None
|
251 |
-
# f0_flat = f0.squeeze().float()
|
252 |
-
# f0_norm = (f0_flat - f0_flat.mean()) / (f0_flat.std() + 1e-8)
|
253 |
-
# f0_sim = torch.exp(-torch.cdist(f0_norm.unsqueeze(1),
|
254 |
-
# f0_norm.unsqueeze(1)))
|
255 |
-
# return f0_sim.unsqueeze(0).unsqueeze(0)
|
256 |
-
|
257 |
-
# def theta_freqs(self, theta):
|
258 |
-
# if theta.dim() == 0:
|
259 |
-
# theta = theta.unsqueeze(0)
|
260 |
-
# freq = (theta.unsqueeze(-1) / 220.0) * 700 * (
|
261 |
-
# torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 8000/700)),
|
262 |
-
# self.head_dim // 2, device=theta.device, dtype=theta.dtype) / 2595) - 1) / 1000
|
263 |
-
# return freq
|
264 |
-
|
265 |
-
# def _apply_radii(self, freqs, f0, ctx):
|
266 |
-
# if self.radii and f0 is not None:
|
267 |
-
# radius = f0.to(device, dtype)
|
268 |
-
# L = radius.shape[0]
|
269 |
-
# if L != ctx:
|
270 |
-
# feature = L / ctx
|
271 |
-
# idx = torch.arange(ctx, device=f0.device)
|
272 |
-
# idx = (idx * feature).long().clamp(0, L - 1)
|
273 |
-
# radius = radius[idx]
|
274 |
-
# return torch.polar(radius.unsqueeze(-1), freqs), radius
|
275 |
-
# else:
|
276 |
-
# return torch.polar(radius.unsqueeze(-1), freqs), radius
|
277 |
-
# else:
|
278 |
-
# return torch.polar(torch.ones_like(freqs), freqs), None
|
279 |
-
|
280 |
-
# def check_f0(self, f0, f0t, ctx):
|
281 |
-
# if f0 is not None and f0.shape[1] == ctx:
|
282 |
-
# return f0
|
283 |
-
# elif f0t is not None and f0t.shape[1] == ctx:
|
284 |
-
# return f0t
|
285 |
-
# else:
|
286 |
-
# return None
|
287 |
-
|
288 |
-
# def axial_freqs(self, ctx):
|
289 |
-
# if not self.axial:
|
290 |
-
# return None
|
291 |
-
# time_frames = self.time_frames
|
292 |
-
# freq_bins = self.freq_bins
|
293 |
-
|
294 |
-
# t = torch.arange(ctx, device=device, dtype=dtype)
|
295 |
-
# t_x = (t % time_frames).float()
|
296 |
-
# t_y = torch.div(t, time_frames, rounding_mode='floor').float()
|
297 |
-
# freqs_x = torch.outer(t_x, self.time_freqs)
|
298 |
-
# freqs_y = torch.outer(t_y, self.freq_freqs)
|
299 |
-
# freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
|
300 |
-
# freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
|
301 |
-
# return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
|
302 |
-
|
303 |
-
# def forward(self, x=None, feats=None, feature=None, layer=None) -> Tensor:
|
304 |
-
# ctx=x
|
305 |
-
# f0 = feats.get("f0") if feats is not None else None
|
306 |
-
# f0t = feats.get("f0t") if feats is not None else None
|
307 |
-
|
308 |
-
# f0 = self.check_f0(f0, f0t, ctx)
|
309 |
-
# if f0 is not None:
|
310 |
-
# # if f0.dim() == 2:
|
311 |
-
# # f0 = f0.squeeze(0)
|
312 |
-
# theta = f0 + self.theta
|
313 |
-
# else:
|
314 |
-
# theta = self.theta
|
315 |
-
# freqs = self.theta_freqs(theta)
|
316 |
-
# t = torch.arange(ctx, device=device, dtype=dtype) # type: ignore
|
317 |
-
# freqs = t[:, None] * freqs
|
318 |
-
# freqs, radius = self._apply_radii(freqs, f0, ctx)
|
319 |
-
|
320 |
-
# if self.axial and feature == "spectrogram":
|
321 |
-
# freqs_2d = self.axial_freqs(ctx)
|
322 |
-
# if freqs_2d is not None:
|
323 |
-
# return freqs_2d.unsqueeze(0)
|
324 |
-
|
325 |
-
# if "radius" in self.debug and self.counter == 10:
|
326 |
-
# print(f" [{layer}] [Radius] {radius.shape if radius is not None else None} {radius.mean() if radius is not None else None} [Theta] {theta.mean() if theta is not None else None} [f0] {f0.shape if f0 is not None else None} [Freqs] {freqs.shape} {freqs.mean():.2f} [ctx] {ctx}")
|
327 |
-
# self.counter += 1
|
328 |
-
# return freqs.unsqueeze(0)
|
329 |
-
|
330 |
-
# @staticmethod
|
331 |
-
# def split(X: Tensor):
|
332 |
-
# half_dim = X.shape[-1] // 2
|
333 |
-
# return X[..., :half_dim], X[..., half_dim:]
|
334 |
-
|
335 |
-
# @staticmethod
|
336 |
-
# def apply_rotary(x, freqs):
|
337 |
-
# x1 = x[..., :freqs.shape[-1]*2]
|
338 |
-
# x2 = x[..., freqs.shape[-1]*2:]
|
339 |
-
# orig_shape = x1.shape
|
340 |
-
# if x1.ndim == 2:
|
341 |
-
# x1 = x1.unsqueeze(0)
|
342 |
-
# x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
|
343 |
-
# x1 = torch.view_as_complex(x1) * freqs
|
344 |
-
# x1 = torch.view_as_real(x1).flatten(-2)
|
345 |
-
# x1 = x1.view(orig_shape)
|
346 |
-
# return torch.cat([x1.type_as(x), x2], dim=-1)
|
347 |
-
|
348 |
-
|
349 |
-
# class feature_encoder(nn.Module):
|
350 |
-
# def __init__(self, mels, input_dims, dims, head, layer, act, features, feature=None, use_rope=False, spec_shape=None, debug=[], attend_feature=False, target_length=None):
|
351 |
-
# """
|
352 |
-
# Feature encoder for audio processing.
|
353 |
-
# """
|
354 |
-
# super().__init__()
|
355 |
-
|
356 |
-
# self.dims = dims
|
357 |
-
# self.head = head
|
358 |
-
# self.head_dim = dims // head
|
359 |
-
# self.dropout = 0.01
|
360 |
-
# self.use_rope = use_rope
|
361 |
-
# self.attend_feature = attend_feature
|
362 |
-
# self.target_length = target_length
|
363 |
-
# self.feature = feature
|
364 |
-
|
365 |
-
# self.debug = debug
|
366 |
-
# act_fn = get_activation(act)
|
367 |
-
|
368 |
-
# if self.attend_feature:
|
369 |
-
# self.q, self.k, self.v, self.o, self.scale = qkv_init(dims, head)
|
370 |
-
# self.mlp = nn.Sequential(nn.Linear(dims, dims), nn.ReLU(), nn.Linear(dims, dims))
|
371 |
-
# else:
|
372 |
-
# self.q, self.k, self.v, self.o, self.scale = None, None, None, None, None
|
373 |
-
# self.mlp = None
|
374 |
-
|
375 |
-
# self.spectrogram = nn.Sequential(
|
376 |
-
# Conv1d(mels, dims, kernel_size=3), act_fn,
|
377 |
-
# Conv1d(dims, dims, kernel_size=3), act_fn,
|
378 |
-
# Conv1d(dims, dims, kernel_size=3, groups=dims), act_fn)
|
379 |
-
|
380 |
-
# self.waveform = nn.Sequential(
|
381 |
-
# Conv1d(1, dims//4, kernel_size=15, stride=4, padding=7), act_fn,
|
382 |
-
# Conv1d(dims//4, dims//2, kernel_size=7, stride=2, padding=3), act_fn,
|
383 |
-
# Conv1d(dims//2, dims, kernel_size=5, stride=2, padding=2), act_fn)
|
384 |
-
|
385 |
-
# self.pitch = nn.Sequential(
|
386 |
-
# Conv1d(1, dims, kernel_size=7, stride=1, padding=3), act_fn,
|
387 |
-
# Conv1d(dims, dims, kernel_size=5, stride=1, padding=2), act_fn,
|
388 |
-
# Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims), act_fn)
|
389 |
-
|
390 |
-
# if use_rope:
|
391 |
-
# # if spec_shape is not None:
|
392 |
-
# self.positional = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)
|
393 |
-
# self.rope = rotary(dims=dims, head=head, radii=False, debug=[], use_pbias=False, axial=False, spec_shape=spec_shape)
|
394 |
-
# else:
|
395 |
-
# self.rope = None
|
396 |
-
# self.positional = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)
|
397 |
-
# self.norm = RMSNorm(dims)
|
398 |
-
|
399 |
-
# def rope(self, x, xa=None, mask=None, feats=None, feature=None, layer=None):
|
400 |
-
# if isinstance(x, int):
|
401 |
-
# ctx = x
|
402 |
-
# elif isinstance(x, torch.Tensor):
|
403 |
-
# ctx = x.shape[1] if x.dim() > 1 else x.shape[0]
|
404 |
-
# batch, ctx, dims = x.shape[0], ctx, x.shape[-1]
|
405 |
-
|
406 |
-
# x = x.view(batch, ctx, self.head, self.head_dim).permute(0, 2, 1, 3)
|
407 |
-
# freqs = self.rope(ctx, feats=feats, feature=feature, layer=layer)
|
408 |
-
# x = self.rope.apply_rotary(x, freqs) # pyright: ignore[reportOptionalSubscript, reportAttributeAccessIssue]
|
409 |
-
# x = x.permute(0, 2, 1, 3).contiguous().view(batch, ctx, dims)
|
410 |
-
# return x
|
411 |
-
|
412 |
-
# def mel_scalar(self, freq: float) -> float:
|
413 |
-
# return 1127.0 * math.log(1.0 + freq / 700.0)
|
414 |
-
|
415 |
-
# def forward(self, x, xa=None, mask=None, feats=None, feature=None, layer=None, max_tscale=36000):
|
416 |
-
# target_length = x.shape[1] if self.target_length is None else self.target_length
|
417 |
-
|
418 |
-
# if feature == "pitch":
|
419 |
-
# xp = x.clone()
|
420 |
-
# enc_dict = feats if feats is not None else {}
|
421 |
-
# enc_dict = dict(enc_dict)
|
422 |
-
# enc_dict["f0"] = xp
|
423 |
-
# # xp = self.mel_scalar(xp.mean())
|
424 |
-
# # print(f"Using pitch scalar: {xp}")
|
425 |
-
# # max_tscale = xp*300
|
426 |
-
# # print(f"Using max_tscale: {max_tscale}")
|
427 |
-
# feats = enc_dict
|
428 |
-
# if x.dim() == 2:
|
429 |
-
# x = x.unsqueeze(0)
|
430 |
-
# x = self.pitch(x).permute(0, 2, 1)
|
431 |
-
|
432 |
-
# if feature == "phase":
|
433 |
-
# if x.dim() == 2:
|
434 |
-
# x = x.unsqueeze(0)
|
435 |
-
# x = self.pitch(x).permute(0, 2, 1)
|
436 |
-
|
437 |
-
# if feature == "waveform":
|
438 |
-
# if x.dim() == 2:
|
439 |
-
# x = x.unsqueeze(0)
|
440 |
-
# x = self.waveform(x).permute(0, 2, 1)
|
441 |
-
# if target_length and x.shape[1] != self.target_length:
|
442 |
-
# x = F.adaptive_avg_pool1d(x.transpose(1, 2), target_length).transpose(1, 2)
|
443 |
-
|
444 |
-
# if feature == "harmonics":
|
445 |
-
# if x.dim() == 2:
|
446 |
-
# x = x.unsqueeze(0)
|
447 |
-
# x = self.spectrogram(x).permute(0, 2, 1)
|
448 |
-
|
449 |
-
# if feature == "aperiodic":
|
450 |
-
# if x.dim() == 2:
|
451 |
-
# x = x.unsqueeze(0)
|
452 |
-
# x = self.spectrogram(x).permute(0, 2, 1)
|
453 |
-
|
454 |
-
# if feature == "spectrogram":
|
455 |
-
# if x.dim() == 2:
|
456 |
-
# x = x.unsqueeze(0)
|
457 |
-
# x = self.spectrogram(x).permute(0, 2, 1)
|
458 |
-
|
459 |
-
# if self.use_rope:
|
460 |
-
# x = x + self.positional(x.shape[1], x.shape[-1], max_tscale).to(device, dtype)
|
461 |
-
# x = self.rope(x=x, xa=None, mask=None, feats=feats, feature=feature, layer=layer)
|
462 |
-
# else:
|
463 |
-
# max_tscale = x.shape[1] * 1000 if max_tscale is None else max_tscale
|
464 |
-
# x = x + self.positional(x.shape[1], x.shape[-1], max_tscale).to(device, dtype)
|
465 |
-
# x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
466 |
-
# x = self.norm(x)
|
467 |
-
|
468 |
-
# if self.attend_feature:
|
469 |
-
# xa = feats[feature] # pyright: ignore[reportOptionalSubscript]
|
470 |
-
# if xa is not None:
|
471 |
-
# q, k, v = create_qkv(self.q, self.k, self.v, x=xa, xa=x, head=self.head)
|
472 |
-
# out, _ = calculate_attention(q, k, v, mask=None, temperature=1.0, is_causal=True)
|
473 |
-
# x = x + out
|
474 |
-
|
475 |
-
# x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
476 |
-
# x = self.norm(x)
|
477 |
-
# return x
|
478 |
-
|
479 |
-
class OneShot(nn.Module):
|
480 |
-
def __init__(self, dims: int, head: int, scale: float = 0.3, features: Optional[List[str]] = None):
|
481 |
-
super().__init__()
|
482 |
-
if features is None:
|
483 |
-
features = ["spectrogram", "waveform", "pitch", "aperiodic", "harmonics"]
|
484 |
-
self.head = head
|
485 |
-
self.head_dim = dims // head
|
486 |
-
self.scale = 1.0 // len(features) if features else scale
|
487 |
-
|
488 |
-
self.q = Linear(dims, dims)
|
489 |
-
self.k = Linear(dims, dims)
|
490 |
-
|
491 |
-
def forward(self, x: Tensor, xa: Tensor, feature=None) -> Tensor | None:
|
492 |
-
B, L, D = x.shape
|
493 |
-
K = xa.size(1)
|
494 |
-
q = self.q(x).view(B, L, self.head, self.head_dim).transpose(1,2)
|
495 |
-
k = self.k(xa).view(B, K, self.head, self.head_dim).transpose(1,2)
|
496 |
-
bias = (q @ k.transpose(-1, -2)) * self.scale / math.sqrt(self.head_dim)
|
497 |
-
return bias
|
498 |
-
|
499 |
-
class curiosity(nn.Module):
|
500 |
-
def __init__(self, d, h, bias=True):
|
501 |
-
super().__init__()
|
502 |
-
self.h = h
|
503 |
-
self.dh = d // h
|
504 |
-
self.qkv = nn.Linear(d, d * 3, bias=bias)
|
505 |
-
self.qkv_aux = nn.Linear(d, d * 3, bias=bias)
|
506 |
-
self.o = nn.Linear(d, d, bias=bias)
|
507 |
-
self.g = nn.Parameter(torch.zeros(h))
|
508 |
-
|
509 |
-
def split(self, x):
|
510 |
-
b, t, _ = x.shape
|
511 |
-
return x.view(b, t, self.h, self.dh).transpose(1, 2)
|
512 |
-
|
513 |
-
def merge(self, x):
|
514 |
-
b, h, t, dh = x.shape
|
515 |
-
return x.transpose(1, 2).contiguous().view(b, t, h * dh)
|
516 |
-
|
517 |
-
def forward(self, x, xa, mask=None):
|
518 |
-
q, k, v = self.qkv(x).chunk(3, -1)
|
519 |
-
qa, ka, va = self.qkv_aux(xa).chunk(3, -1)
|
520 |
-
q, k, v = map(self.split, (q, k, v))
|
521 |
-
qa, ka, va = map(self.split, (qa, ka, va))
|
522 |
-
dots = (q @ k.transpose(-2, -1)) / self.dh**0.5
|
523 |
-
dots_aux = (q @ ka.transpose(-2, -1)) / self.dh**0.5
|
524 |
-
if mask is not None: dots = dots.masked_fill(mask, -9e15)
|
525 |
-
p = dots.softmax(-1)
|
526 |
-
pa = dots_aux.softmax(-1)
|
527 |
-
h_main = p @ v
|
528 |
-
h_aux = pa @ va
|
529 |
-
g = torch.sigmoid(self.g).view(1, -1, 1, 1)
|
530 |
-
out = self.merge(h_main * (1 - g) + h_aux * g)
|
531 |
-
return self.o(out)
|
532 |
-
|
533 |
-
class PositionalEncoding(nn.Module):
|
534 |
-
def __init__(self, dims, ctx):
|
535 |
-
super(PositionalEncoding, self).__init__()
|
536 |
-
self.dims = dims
|
537 |
-
self.ctx = ctx
|
538 |
-
self.pe = self.get_positional_encoding(max_ctx=ctx)
|
539 |
-
|
540 |
-
def get_positional_encoding(self, max_ctx):
|
541 |
-
pe = torch.zeros(max_ctx, self.dims)
|
542 |
-
position = torch.arange(0, max_ctx, dtype=torch.float32).unsqueeze(1)
|
543 |
-
div_term = torch.exp(
|
544 |
-
torch.arange(0, self.dims, 2, dtype=torch.float32)
|
545 |
-
* (-math.log(10000.0) / self.dims)
|
546 |
-
)
|
547 |
-
pe[:, 0::2] = torch.sin(position * div_term)
|
548 |
-
pe[:, 1::2] = torch.cos(position * div_term)
|
549 |
-
pe = pe.unsqueeze(0)
|
550 |
-
return pe.to(device)
|
551 |
-
|
552 |
-
def forward(self, x):
|
553 |
-
ctx = x.size(1)
|
554 |
-
pe = self.pe[:, :ctx, :]
|
555 |
-
x = x * math.sqrt(self.dims)
|
556 |
-
x = x + pe
|
557 |
-
return x
|
558 |
-
|
559 |
-
|
560 |
-
def plot_waveform(x=None, w=None, p=None, per=None, sample_idx=0, sr=16000, hop_length=160,
|
561 |
-
title="", markers=None, marker_labels=None,
|
562 |
-
show_voiced_regions=True, show_energy=False):
|
563 |
-
num_plots = sum([x is not None, w is not None, p is not None, per is not None])
|
564 |
-
if num_plots == 0:
|
565 |
-
raise ValueError("No data to plot. Please provide at least one input tensor.")
|
566 |
-
t_spans = []
|
567 |
-
|
568 |
-
if w is not None:
|
569 |
-
w_np = w[sample_idx].detach().cpu().numpy()
|
570 |
-
if w_np.ndim > 1:
|
571 |
-
w_np = w_np.squeeze()
|
572 |
-
t_spans.append(len(w_np) / sr)
|
573 |
-
if x is not None:
|
574 |
-
x_np = x[sample_idx].detach().cpu().numpy()
|
575 |
-
if x_np.shape[0] < x_np.shape[1]:
|
576 |
-
x_np = x_np.T
|
577 |
-
t_spans.append(x_np.shape[0] * hop_length / sr)
|
578 |
-
if p is not None:
|
579 |
-
p_np = p[sample_idx].detach().cpu().numpy()
|
580 |
-
if p_np.ndim > 1:
|
581 |
-
p_np = p_np.squeeze()
|
582 |
-
t_spans.append(len(p_np) * hop_length / sr)
|
583 |
-
if per is not None:
|
584 |
-
per_np = per[sample_idx].detach().cpu().numpy()
|
585 |
-
if per_np.ndim > 1:
|
586 |
-
per_np = per_np.squeeze()
|
587 |
-
t_spans.append(len(per_np) * hop_length / sr)
|
588 |
-
max_t = max(t_spans) if t_spans else 0
|
589 |
-
fig, axs = plt.subplots(num_plots, 1, figsize=(14, 4*num_plots), sharex=True)
|
590 |
-
if num_plots == 1:
|
591 |
-
axs = [axs]
|
592 |
-
if show_voiced_regions and per is not None:
|
593 |
-
per_np = per[sample_idx].detach().cpu().numpy()
|
594 |
-
if per_np.ndim > 1:
|
595 |
-
per_np = per_np.squeeze()
|
596 |
-
t_per = np.arange(len(per_np)) * hop_length / sr
|
597 |
-
threshold = 0.5
|
598 |
-
for ax in axs:
|
599 |
-
for i in range(len(per_np)-1):
|
600 |
-
if per_np[i] > threshold:
|
601 |
-
ax.axvspan(t_per[i], t_per[i+1], color='lightblue', alpha=0.2, zorder=0)
|
602 |
-
cu_ax = 0
|
603 |
-
if w is not None:
|
604 |
-
w_np = w[sample_idx].detach().cpu().numpy()
|
605 |
-
if w_np.ndim > 1:
|
606 |
-
w_np = w_np.squeeze()
|
607 |
-
t = np.arange(len(w_np)) / sr
|
608 |
-
axs[cu_ax].plot(t, w_np, color="tab:blue")
|
609 |
-
|
610 |
-
if show_energy:
|
611 |
-
frame_length = hop_length
|
612 |
-
hop_length_energy = hop_length // 2
|
613 |
-
energy = []
|
614 |
-
for i in range(0, len(w_np)-frame_length, hop_length_energy):
|
615 |
-
frame = w_np[i:i+frame_length]
|
616 |
-
energy.append(np.sqrt(np.mean(frame**2)))
|
617 |
-
energy = np.array(energy)
|
618 |
-
energy = energy / np.max(energy) * 0.8 * max(abs(w_np.min()), abs(w_np.max()))
|
619 |
-
t_energy = np.arange(len(energy)) * hop_length_energy / sr
|
620 |
-
axs[cu_ax].plot(t_energy, energy, color="red", alpha=0.7, label="Energy")
|
621 |
-
axs[cu_ax].legend(loc='upper right')
|
622 |
-
axs[cu_ax].set_title("Waveform")
|
623 |
-
axs[cu_ax].set_ylabel("Amplitude")
|
624 |
-
axs[cu_ax].set_xlim([0, max_t])
|
625 |
-
axs[cu_ax].grid(True, axis='x', linestyle='--', alpha=0.3)
|
626 |
-
cu_ax += 1
|
627 |
-
|
628 |
-
if x is not None:
|
629 |
-
x_np = x[sample_idx].detach().cpu().numpy()
|
630 |
-
if x_np.shape[0] < x_np.shape[1]:
|
631 |
-
x_np = x_np.T
|
632 |
-
axs[cu_ax].imshow(x_np.T, aspect="auto", origin="lower", cmap="magma",
|
633 |
-
extent=[0, x_np.shape[0]*hop_length/sr, 0, x_np.shape[1]])
|
634 |
-
axs[cu_ax].set_title("Spectrogram")
|
635 |
-
axs[cu_ax].set_ylabel("Mel Bin")
|
636 |
-
axs[cu_ax].set_xlim([0, max_t])
|
637 |
-
axs[cu_ax].grid(True, axis='x', linestyle='--', alpha=0.3)
|
638 |
-
cu_ax += 1
|
639 |
-
|
640 |
-
if p is not None:
|
641 |
-
p_np = p[sample_idx].detach().cpu().numpy()
|
642 |
-
if p_np.ndim > 1:
|
643 |
-
p_np = p_np.squeeze()
|
644 |
-
t_p = np.arange(len(p_np)) * hop_length / sr
|
645 |
-
axs[cu_ax].plot(t_p, p_np, color="tab:green")
|
646 |
-
axs[cu_ax].set_title("Pitch")
|
647 |
-
axs[cu_ax].set_ylabel("Frequency (Hz)")
|
648 |
-
axs[cu_ax].set_xlim([0, max_t])
|
649 |
-
axs[cu_ax].grid(True, axis='both', linestyle='--', alpha=0.3)
|
650 |
-
axs[cu_ax].set_ylim([0, min(1000, p_np.max() * 1.2)])
|
651 |
-
cu_ax += 1
|
652 |
-
|
653 |
-
if per is not None:
|
654 |
-
per_np = per[sample_idx].detach().cpu().numpy()
|
655 |
-
if per_np.ndim > 1:
|
656 |
-
per_np = per_np.squeeze()
|
657 |
-
t_per = np.arange(len(per_np)) * hop_length / sr
|
658 |
-
axs[cu_ax].plot(t_per, per_np, color="tab:red")
|
659 |
-
axs[cu_ax].set_title("Period (Voice Activity)")
|
660 |
-
axs[cu_ax].set_ylabel("periodocity")
|
661 |
-
axs[cu_ax].set_xlim([0, max_t])
|
662 |
-
axs[cu_ax].grid(True, axis='both', linestyle='--', alpha=0.3)
|
663 |
-
axs[cu_ax].set_ylim([-0.05, 1.05])
|
664 |
-
axs[cu_ax].axhline(y=0.5, color='k', linestyle='--', alpha=0.3)
|
665 |
-
|
666 |
-
if markers is not None:
|
667 |
-
for i, t in enumerate(markers):
|
668 |
-
label = marker_labels[i] if marker_labels and i < len(marker_labels) else None
|
669 |
-
for ax in axs:
|
670 |
-
ax.axvline(x=t, color='k', linestyle='-', alpha=0.7, label=label if i == 0 else None)
|
671 |
-
if marker_labels:
|
672 |
-
axs[0].legend(loc='upper right', fontsize='small')
|
673 |
-
axs[-1].set_xlabel("t (s)")
|
674 |
-
fig.suptitle(title, fontsize=16)
|
675 |
-
plt.tight_layout(rect=[0, 0, 1, 0.97]) # type: ignore
|
676 |
-
plt.show()
|
677 |
-
return fig
|
678 |
-
|
679 |
-
def valid(default_value, *items):
|
680 |
-
"""Get first non-None item"""
|
681 |
-
for item in items:
|
682 |
-
if item is not None:
|
683 |
-
return item
|
684 |
-
return default_value
|
685 |
-
|
686 |
-
def dict_to(d, device, dtype=dtype):
|
687 |
-
return {k: v.to(device, dtype) if isinstance(v, torch.Tensor) else v
|
688 |
-
for k, v in d.items()}
|
689 |
-
|
690 |
-
def exists(v):
|
691 |
-
return v is not None
|
692 |
-
|
693 |
-
def default(v, b):
|
694 |
-
return v if exists(v) else b
|
695 |
-
|
696 |
-
class Conv1d(nn.Conv1d):
|
697 |
-
def _conv_forward(
|
698 |
-
self, x: Tensor, weight: Tensor, bias) -> Tensor:
|
699 |
-
return super()._conv_forward(x, weight.to(x.device, x.dtype), None if bias is None else bias.to(x.device, x.dtype))
|
700 |
-
|
701 |
-
class Conv2d(nn.Conv2d):
|
702 |
-
def _conv_forward(
|
703 |
-
self, x: Tensor, weight: Tensor, bias) -> Tensor:
|
704 |
-
return super()._conv_forward(x, weight.to(x.device, x.dtype), None if bias is None else bias.to(x.device, x.dtype))
|
705 |
-
|
706 |
-
class Linear(nn.Module):
|
707 |
-
def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None:
|
708 |
-
super(Linear, self).__init__()
|
709 |
-
self.linear = nn.Linear(in_features, out_features, bias=bias)
|
710 |
-
init.xavier_uniform_(self.linear.weight)
|
711 |
-
if bias:
|
712 |
-
init.zeros_(self.linear.bias)
|
713 |
-
def forward(self, x: Tensor) -> Tensor:
|
714 |
-
return self.linear(x)
|
715 |
-
|
716 |
-
class RMSNorm(nn.Module):
|
717 |
-
def __init__(self, dims: Union[int, Tensor, List, Tuple],
|
718 |
-
eps = 1e-8, elementwise_affine = True):
|
719 |
-
super(RMSNorm, self).__init__()
|
720 |
-
if isinstance(dims, int):
|
721 |
-
self.normalized_shape = (dims,)
|
722 |
-
else:
|
723 |
-
self.normalized_shape = tuple(dims)
|
724 |
-
self.eps = eps
|
725 |
-
self.elementwise_affine = elementwise_affine
|
726 |
-
if self.elementwise_affine:
|
727 |
-
self.weight = nn.Parameter(torch.empty(self.normalized_shape)) # type: ignore
|
728 |
-
init.ones_(self.weight)
|
729 |
-
else:
|
730 |
-
self.register_parameter("weight", None)
|
731 |
-
def forward(self, x):
|
732 |
-
return F.rms_norm(x, self.normalized_shape, self.weight, self.eps) # type: ignore
|
733 |
-
|
734 |
-
def LayerNorm(x: Tensor, normalized_shape: Union[int, Tensor, List, Tuple],
|
735 |
-
weight: Optional[Tensor] = None, bias: Optional[Tensor] = None,
|
736 |
-
eps: float = 1e-5) -> Tensor:
|
737 |
-
return F.layer_norm(x, normalized_shape, weight, bias, eps) # type: ignore
|
738 |
-
|
739 |
-
def get_device():
|
740 |
-
return torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
741 |
-
|
742 |
-
def get_dtype():
|
743 |
-
return torch.float32 if torch.cuda.is_available() else torch.float64
|
744 |
-
|
745 |
-
def tox():
|
746 |
-
return {"device": get_device(), "dtype": get_dtype()}
|
747 |
-
|
748 |
-
class Sinusoids(nn.Module):
|
749 |
-
def __init__(self, ctx: int, dims: int):
|
750 |
-
super().__init__()
|
751 |
-
|
752 |
-
position = torch.arange(start=0, end=ctx, dtype=dtype).unsqueeze(dim=1)
|
753 |
-
div_term = torch.exp(input=torch.arange(start=0, end=dims, step=2, dtype=dtype) * -(math.log(10000.0) / dims))
|
754 |
-
features = torch.zeros(ctx, dims)
|
755 |
-
features[:, 0::2] = torch.sin(position * div_term)
|
756 |
-
features[:, 1::2] = torch.cos(position* div_term)
|
757 |
-
self.register_buffer('sinusoid', tensor=features)
|
758 |
-
self.positional_embeddings = nn.Parameter(self.sinusoid.clone()) # type: ignore
|
759 |
-
def forward(self, positions):
|
760 |
-
position_embeddings = self.positional_embeddings[positions]
|
761 |
-
return position_embeddings
|
762 |
-
|
763 |
-
def sinusoids(length, channels, max_tscale=10000):
|
764 |
-
assert channels % 2 == 0
|
765 |
-
log_tscale_increment = torch.log(torch.tensor(float(max_tscale))) / (channels // 2 - 1)
|
766 |
-
inv_tscales = torch.exp(-log_tscale_increment * torch.arange(channels // 2, device=device, dtype=torch.float32))
|
767 |
-
scaled_t = torch.arange(length, device=device, dtype=torch.float32).unsqueeze(1) * inv_tscales.unsqueeze(0)
|
768 |
-
return torch.cat([torch.sin(scaled_t), torch.cos(scaled_t)], dim=1)
|
769 |
-
|
770 |
-
class SelfCriticalRL(nn.Module):
|
771 |
-
def __init__(self, model, tokenizer, reward_fn):
|
772 |
-
super().__init__()
|
773 |
-
self.model = model
|
774 |
-
self.tokenizer = tokenizer
|
775 |
-
self.reward_fn = reward_fn
|
776 |
-
|
777 |
-
def forward(self, input_ids, features, labels=None, max_len=128, feature_name="spectrogram"):
|
778 |
-
|
779 |
-
with torch.no_grad():
|
780 |
-
greedy_ids = self.model.generate(input_ids=input_ids, **{feature_name: features}, max_length=max_len)
|
781 |
-
greedy_text = [self.tokenizer.decode(ids) for ids in greedy_ids]
|
782 |
-
sampled_ids = self.model.generate(input_ids=input_ids, **{feature_name: features}, max_length=max_len, do_sample=True, top_k=5)
|
783 |
-
sampled_text = [self.tokenizer.decode(ids) for ids in sampled_ids]
|
784 |
-
|
785 |
-
rewards = []
|
786 |
-
baseline = []
|
787 |
-
for s, g, ref in zip(sampled_text, greedy_text, labels): # type: ignore
|
788 |
-
ref_text = self.tokenizer.decode(ref)
|
789 |
-
rewards.append(self.reward_fn(s, ref_text))
|
790 |
-
baseline.append(self.reward_fn(g, ref_text))
|
791 |
-
rewards = torch.tensor(rewards, device=device, dtype=torch.float)
|
792 |
-
baseline = torch.tensor(baseline, device=device, dtype=torch.float)
|
793 |
-
advantage = rewards - baseline
|
794 |
-
logits = self.model(input_ids=sampled_ids, **{feature_name: features})["logits"] # logits: [batch, sampled_seq_len, vocab_size]
|
795 |
-
log_probs = F.log_softmax(logits, dim=-1)
|
796 |
-
log_probs_seq = torch.gather(log_probs, 2, sampled_ids.unsqueeze(-1)).squeeze(-1)
|
797 |
-
log_probs_sum = log_probs_seq.sum(dim=1)
|
798 |
-
loss = -(advantage * log_probs_sum).mean()
|
799 |
-
return loss
|
800 |
-
|
801 |
-
class SelfTrainingModule(nn.Module):
|
802 |
-
def __init__(self, model, tokenizer, quality_fn=None, threshold=0.8):
|
803 |
-
super().__init__()
|
804 |
-
self.model = model
|
805 |
-
self.tokenizer = tokenizer
|
806 |
-
self.quality_fn = quality_fn
|
807 |
-
self.threshold = threshold
|
808 |
-
|
809 |
-
def generate_pseudo_labels(self, unlabeled_batch, features, max_len=128, feature_name="spectrogram"):
|
810 |
-
with torch.no_grad():
|
811 |
-
pred_ids = self.model.generate(input_ids=unlabeled_batch, **{feature_name: features}, max_length=max_len)
|
812 |
-
|
813 |
-
if self.quality_fn is not None:
|
814 |
-
quality_scores = self.quality_fn(pred_ids, self.model, features)
|
815 |
-
mask = quality_scores > self.threshold
|
816 |
-
pred_ids = pred_ids[mask]
|
817 |
-
return pred_ids
|
818 |
-
|
819 |
-
def forward(self, unlabeled_batch, features, max_len=128, feature_name="spectrogram"):
|
820 |
-
pseudo_labels = self.generate_pseudo_labels(unlabeled_batch, features, max_len, feature_name=feature_name)
|
821 |
-
logits = self.model(input_ids=unlabeled_batch, **{feature_name: features}, labels=pseudo_labels)["logits"]
|
822 |
-
loss = nn.functional.cross_entropy(
|
823 |
-
logits.view(-1, logits.shape[-1]), pseudo_labels.view(-1), ignore_index=0)
|
824 |
-
return loss
|
825 |
-
|
826 |
-
def confidence_indicator(pred_ids, model, features):
|
827 |
-
with torch.no_grad():
|
828 |
-
logits = model(input_ids=pred_ids, **features)["logits"]
|
829 |
-
probs = torch.softmax(logits, dim=-1)
|
830 |
-
max_probs, _ = probs.max(dim=-1)
|
831 |
-
return max_probs.mean(dim=1)
|
832 |
-
|
833 |
-
def wer_reward(hyp, ref):
|
834 |
-
|
835 |
-
hyp_words = hyp.split()
|
836 |
-
ref_words = ref.split()
|
837 |
-
d = [[0] * (len(ref_words)+1) for _ in range(len(hyp_words)+1)]
|
838 |
-
for i in range(len(hyp_words)+1):
|
839 |
-
d[i][0] = i
|
840 |
-
for j in range(len(ref_words)+1):
|
841 |
-
d[0][j] = j
|
842 |
-
for i in range(1, len(hyp_words)+1):
|
843 |
-
for j in range(1, len(ref_words)+1):
|
844 |
-
if hyp_words[i-1] == ref_words[j-1]:
|
845 |
-
d[i][j] = d[i-1][j-1]
|
846 |
-
else:
|
847 |
-
d[i][j] = 1 + min(d[i-1][j], d[i][j-1], d[i-1][j-1])
|
848 |
-
wer = d[-1][-1] / max(1, len(ref_words))
|
849 |
-
return -wer # negative WER as reward
|
850 |
-
|
851 |
-
def clean_ids(ids, pad_token_id=0, bos_token_id=1, eos_token_id=2):
|
852 |
-
if isinstance(ids, torch.Tensor):
|
853 |
-
ids = ids.tolist()
|
854 |
-
return [int(id) for id in ids if id != -100 and id != pad_token_id and id != bos_token_id and id != eos_token_id]
|
855 |
-
|
856 |
-
def clean_batch(batch_ids, pad_token_id=0, bos_token_id=1, eos_token_id=2):
|
857 |
-
return [clean_ids(seq, pad_token_id, bos_token_id, eos_token_id) for seq in batch_ids]
|
858 |
-
|
859 |
-
def setup_tokenizer(dir: str):
|
860 |
-
from tokenizers import Tokenizer
|
861 |
-
tokenizer = Tokenizer.from_file(f"{dir}")
|
862 |
-
orig_encode = tokenizer.encode
|
863 |
-
orig_decode = tokenizer.decode
|
864 |
-
|
865 |
-
def enc(text, add_special_tokens=True):
|
866 |
-
ids = orig_encode(text).ids
|
867 |
-
if not add_special_tokens:
|
868 |
-
sp_ids = [tokenizer.token_to_id(t) for t in ["<PAD>", "<BOS>", "<EOS>"]]
|
869 |
-
ids = [id for id in ids if id not in sp_ids]
|
870 |
-
return ids
|
871 |
-
|
872 |
-
def bdec(ids_list, pad_token_id=0, bos_token_id=1, eos_token_id=2, skip_special_tokens=True):
|
873 |
-
results = []
|
874 |
-
if isinstance(ids_list, torch.Tensor):
|
875 |
-
ids_list = ids_list.tolist()
|
876 |
-
elif isinstance(ids_list, np.ndarray):
|
877 |
-
ids_list = ids_list.tolist()
|
878 |
-
for ids in ids_list:
|
879 |
-
ids = [int(id) for id in ids if id not in (pad_token_id, bos_token_id, eos_token_id, -100)]
|
880 |
-
results.append(orig_decode(ids))
|
881 |
-
return results
|
882 |
-
|
883 |
-
def dec(ids, pad_token_id=0, bos_token_id=1, eos_token_id=2):
|
884 |
-
ids = [int(id) for id in ids if id not in (pad_token_id, bos_token_id, eos_token_id, -100)]
|
885 |
-
return orig_decode(ids)
|
886 |
-
|
887 |
-
def save_pretrained(save_dir):
|
888 |
-
os.makedirs(save_dir, exist_ok=True)
|
889 |
-
tokenizer.save(f"{save_dir}/tokenizer.json")
|
890 |
-
|
891 |
-
tokenizer.encode = enc
|
892 |
-
tokenizer.batch_decode = bdec
|
893 |
-
tokenizer.decode = dec
|
894 |
-
tokenizer.save_pretrained = save_pretrained
|
895 |
-
tokenizer.pad_token_id = 0
|
896 |
-
tokenizer.bos_token_id = 1
|
897 |
-
tokenizer.eos_token_id = 2
|
898 |
-
return tokenizer
|
899 |
-
|
900 |
-
def tokenize_pitch(pitch_features, target_length):
|
901 |
-
pitch_len = pitch_features.shape[-1]
|
902 |
-
token_len = target_length
|
903 |
-
if pitch_len > token_len:
|
904 |
-
pitch_tokens = F.adaptive_avg_pool1d(pitch_features, token_len)
|
905 |
-
else:
|
906 |
-
pitch_tokens = F.interpolate(pitch_features, token_len)
|
907 |
-
return pitch_tokens
|
908 |
-
|
909 |
-
def load_wave(wave_data, sample_rate=16000):
|
910 |
-
|
911 |
-
if isinstance(wave_data, str):
|
912 |
-
waveform, sample_rate = torchaudio.load(uri=wave_data, normalize=False)
|
913 |
-
elif isinstance(wave_data, dict):
|
914 |
-
waveform = torch.tensor(data=wave_data["array"]).float()
|
915 |
-
sample_rate = wave_data["sampling_rate"] # noqa: F841
|
916 |
-
else:
|
917 |
-
raise TypeError("Invalid wave_data format.")
|
918 |
-
return waveform
|
919 |
-
|
920 |
-
def world_to_mel(sp, ap, sample_rate=16000, n_mels=128):
|
921 |
-
import librosa
|
922 |
-
mel_basis = librosa.filters.mel(sr=sample_rate, n_fft=1024, n_mels=n_mels)
|
923 |
-
mel_basis = torch.from_numpy(mel_basis).float()
|
924 |
-
sp_mel = torch.matmul(sp, mel_basis.T) # (frames, 128)
|
925 |
-
ap_mel = torch.matmul(ap, mel_basis.T) # (frames, 128)
|
926 |
-
return sp_mel, ap_mel
|
927 |
-
|
928 |
-
def extract_features(batch, tokenizer, waveform=False, spec=False, f0=False, f0t=False, pitch=False, harmonics=False, sample_rate=16000, hop_length=256, mode="mean", debug=False, phase_mod=False, crepe=False, aperiodics=False, dummy=False):
|
929 |
-
|
930 |
-
# import torchaudio
|
931 |
-
# import torchaudio.functional
|
932 |
-
# import torchaudio.transforms
|
933 |
-
|
934 |
-
# torch_windows = {
|
935 |
-
# 'hann': torch.hann_window,
|
936 |
-
# 'hamming': torch.hamming_window,
|
937 |
-
# 'blackman': torch.blackman_window,
|
938 |
-
# 'bartlett': torch.bartlett_window,
|
939 |
-
# 'ones': torch.ones,
|
940 |
-
# None: torch.ones,
|
941 |
-
# }
|
942 |
-
# if dummy:
|
943 |
-
# return {
|
944 |
-
# "spectrogram": torch.zeros((1, 128, 100)),
|
945 |
-
# "f0": torch.zeros((1, 100)),
|
946 |
-
# "f0t": torch.zeros((1, 100)),
|
947 |
-
# "pitch": torch.zeros((1, 100)),
|
948 |
-
# "harmonics": torch.zeros((1, 128, 100)),
|
949 |
-
# "aperiodics": torch.zeros((1, 128, 100)),
|
950 |
-
# "crepe_time": None,
|
951 |
-
# "crepe_frequency": None,
|
952 |
-
# "crepe_confidence": None,
|
953 |
-
# "crepe_activation": None,
|
954 |
-
# }
|
955 |
-
|
956 |
-
audio = batch["audio"]
|
957 |
-
sample_rate = audio["sampling_rate"]
|
958 |
-
labels = tokenizer.encode(batch["transcription"])
|
959 |
-
wav = load_wave(wave_data=audio, sample_rate=sample_rate)
|
960 |
-
|
961 |
-
spectrogram_config = {
|
962 |
-
# "hop_length": 256,
|
963 |
-
# "f_min": 150,
|
964 |
-
# "f_max": 2000,
|
965 |
-
# "n_mels": 128,
|
966 |
-
# "n_fft": 1024,
|
967 |
-
"sample_rate": 16000,
|
968 |
-
# "pad_mode": "constant",
|
969 |
-
# "center": True,
|
970 |
-
# "power": 1.0,
|
971 |
-
# "window_fn": torch.hann_window,
|
972 |
-
# "mel_scale": "htk",
|
973 |
-
# "norm": None,
|
974 |
-
# "normalized": False,
|
975 |
-
}
|
976 |
-
|
977 |
-
def crepe_predict(wav, sample_rate, viterbi=False):
|
978 |
-
import torchcrepe
|
979 |
-
wav = wav.numpy().astype(np.float32)
|
980 |
-
time, frequency, confidence, activation = torchcrepe.predict(
|
981 |
-
wav, sample_rate=sample_rate, viterbi=viterbi)
|
982 |
-
crepe_time = torch.from_numpy(time)
|
983 |
-
crepe_frequency = torch.from_numpy(frequency)
|
984 |
-
crepe_confidence = torch.from_numpy(confidence)
|
985 |
-
crepe_activation = torch.from_numpy(activation)
|
986 |
-
return crepe_time, crepe_frequency, crepe_confidence, crepe_activation
|
987 |
-
|
988 |
-
if crepe:
|
989 |
-
crepe_time, crepe_frequency, crepe_confidence, crepe_activation = crepe_predict(wav, sample_rate, viterbi=True)
|
990 |
-
|
991 |
-
else:
|
992 |
-
crepe_time = None
|
993 |
-
crepe_frequency = None
|
994 |
-
crepe_confidence = None
|
995 |
-
crepe_activation = None
|
996 |
-
|
997 |
-
# def spectrogram(wav, sample_rate, n_fft=1024, hop_length=256, window_fn=torch.hann_window):
|
998 |
-
# if isinstance(window_fn, str):
|
999 |
-
# window_fn = torch_windows[window_fn]
|
1000 |
-
# if window_fn is None:
|
1001 |
-
# window_fn = torch.ones(n_fft)
|
1002 |
-
# if isinstance(window_fn, torch.Tensor):
|
1003 |
-
# window_fn = window_fn.to(device)
|
1004 |
-
# return torchaudio.functional.spectrogram(
|
1005 |
-
# wav, n_fft=n_fft, hop_length=hop_length, win_length=n_fft,
|
1006 |
-
# window=window_fn, center=True, pad_mode="reflect", power=1.0)
|
1007 |
-
|
1008 |
-
# def mel_spectrogram(wav, sample_rate, n_fft=1024, hop_length=256, window_fn=torch.hann_window):
|
1009 |
-
# transform = torchaudio.transforms.MelSpectrogram(**spectrogram_config)
|
1010 |
-
# mel_spectrogram = transform(wav)
|
1011 |
-
# log_mel = torch.clamp(mel_spectrogram, min=1e-10).log10()
|
1012 |
-
# log_mel = torch.maximum(log_mel, log_mel.max() - 8.0)
|
1013 |
-
# spectrogram_tensor = (log_mel + 4.0) / 4.0
|
1014 |
-
# spectrogram_tensor = torch.tensor(spectrogram_tensor)
|
1015 |
-
# return spectrogram_tensor
|
1016 |
-
if spec:
|
1017 |
-
transform = torchaudio.transforms.MelSpectrogram(**spectrogram_config)
|
1018 |
-
mel_spectrogram = transform(wav)
|
1019 |
-
log_mel = torch.clamp(mel_spectrogram, min=1e-10).log10()
|
1020 |
-
log_mel = torch.maximum(log_mel, log_mel.max() - 8.0)
|
1021 |
-
spectrogram_tensor = (log_mel + 4.0) / 4.0
|
1022 |
-
spectrogram_tensor = torch.tensor(spectrogram_tensor)
|
1023 |
-
|
1024 |
-
|
1025 |
-
|
1026 |
-
# if spec:
|
1027 |
-
# if isinstance(wav, torch.Tensor):
|
1028 |
-
# wav = wav.to(device)
|
1029 |
-
# spectrogram_tensor = mel_spectrogram(wav, sample_rate, **spectrogram_config)
|
1030 |
-
# spectrogram_tensor = spectrogram_tensor.permute(1, 0)
|
1031 |
-
|
1032 |
-
|
1033 |
-
def mfcc(wav, sample_rate, n_mels=128, n_fft=1024, hop_length=256, window_fn=torch.hann_window):
|
1034 |
-
transform = torchaudio.transforms.MFCC(
|
1035 |
-
sample_rate=sample_rate,
|
1036 |
-
n_mfcc=n_mels,
|
1037 |
-
melkwargs={
|
1038 |
-
"n_fft": n_fft,
|
1039 |
-
"hop_length": hop_length,
|
1040 |
-
"window_fn": window_fn,
|
1041 |
-
"n_mels": n_mels,
|
1042 |
-
"center": True,
|
1043 |
-
"pad_mode": "reflect",
|
1044 |
-
"norm": None,
|
1045 |
-
"mel_scale": "htk",
|
1046 |
-
}
|
1047 |
-
)
|
1048 |
-
mfcc_tensor = transform(wav)
|
1049 |
-
return mfcc_tensor
|
1050 |
-
|
1051 |
-
|
1052 |
-
def compute_pitch(wav, sample_rate, hop_length=256):
|
1053 |
-
import pyworld as pw
|
1054 |
-
wav_np = wav.numpy().astype(np.float64)
|
1055 |
-
f0, t = pw.dio(wav_np, sample_rate, frame_period=hop_length / sample_rate * 1000)
|
1056 |
-
f0 = pw.stonemask(wav_np, f0, t, sample_rate)
|
1057 |
-
return f0, t
|
1058 |
-
|
1059 |
-
def compute_harmonics_and_aperiodics(wav, f0, t, sample_rate):
|
1060 |
-
import pyworld as pw
|
1061 |
-
wav_np = wav.numpy().astype(np.float64)
|
1062 |
-
sp = pw.cheaptrick(wav_np, f0, t, sample_rate, fft_size=256)
|
1063 |
-
ap = pw.d4c(wav_np, f0, t, sample_rate, fft_size=256)
|
1064 |
-
harmonic_tensor = torch.from_numpy(sp)
|
1065 |
-
aperiodic_tensor = torch.from_numpy(ap)
|
1066 |
-
harmonic_tensor = harmonic_tensor[:, :128].contiguous().T
|
1067 |
-
aperiodic_tensor = aperiodic_tensor[:, :128].contiguous().T
|
1068 |
-
harmonic_tensor = torch.where(harmonic_tensor == 0.0, torch.zeros_like(harmonic_tensor), harmonic_tensor / 1.0)
|
1069 |
-
aperiodic_tensor = torch.where(aperiodic_tensor == 0.0, torch.zeros_like(aperiodic_tensor), aperiodic_tensor / 1.0)
|
1070 |
-
return harmonic_tensor, aperiodic_tensor
|
1071 |
-
|
1072 |
-
|
1073 |
-
if f0 or f0t or pitch or harmonics or aperiodics:
|
1074 |
-
wavnp = wav.numpy().astype(np.float64)
|
1075 |
-
f0_np, t = pw.dio(wavnp, sample_rate, frame_period=hop_length / sample_rate * 1000)
|
1076 |
-
f0_np = pw.stonemask(wavnp, f0_np, t, sample_rate)
|
1077 |
-
|
1078 |
-
if f0:
|
1079 |
-
f0_tensor = torch.from_numpy(f0_np)
|
1080 |
-
else:
|
1081 |
-
f0_tensor = None
|
1082 |
-
|
1083 |
-
if f0t:
|
1084 |
-
wav = torch.from_numpy(wavnp)
|
1085 |
-
t2 = torch.from_numpy(t)
|
1086 |
-
audio_duration = len(wav) / sample_rate
|
1087 |
-
T = len(labels)
|
1088 |
-
tok_dur_sec = audio_duration / T
|
1089 |
-
token_starts = torch.arange(T) * tok_dur_sec
|
1090 |
-
token_ends = token_starts + tok_dur_sec
|
1091 |
-
start_idx = torch.searchsorted(t2, token_starts, side="left")
|
1092 |
-
end_idx = torch.searchsorted(t2, token_ends, side="right")
|
1093 |
-
pitch_tok = torch.zeros(T, dtype=torch.float32)
|
1094 |
-
for i in range(T):
|
1095 |
-
lo, hi = start_idx[i], max(start_idx[i]+1, end_idx[i]) # type: ignore
|
1096 |
-
segment = f0_np[lo:hi]
|
1097 |
-
if mode == "mean":
|
1098 |
-
pitch_tok[i] = segment.mean()
|
1099 |
-
elif mode == "median":
|
1100 |
-
pitch_tok[i] = torch.median(segment)
|
1101 |
-
else:
|
1102 |
-
pitch_tok[i] = segment[-1]
|
1103 |
-
pitch_tok[pitch_tok < 100.0] = 0.0
|
1104 |
-
bos_pitch = pitch_tok[0] if len(pitch_tok) > 0 else 0.0
|
1105 |
-
f0t_tensor = torch.cat([torch.tensor([bos_pitch]), pitch_tok])
|
1106 |
-
f0t_tensor = torch.where(f0t_tensor == 0.0, torch.zeros_like(f0t_tensor), (f0t_tensor - 71.0) / (500.0 - 71.0))
|
1107 |
-
else:
|
1108 |
-
f0t_tensor = None
|
1109 |
-
|
1110 |
-
if phase_mod:
|
1111 |
-
tframe = torch.mean(t2[1:] - t2[:-1])
|
1112 |
-
phi0 = 0.0
|
1113 |
-
omega = 2 * torch.pi * f0_tensor # type: ignore
|
1114 |
-
dphi = omega * tframe
|
1115 |
-
phi = torch.cumsum(dphi, dim=0) + phi0
|
1116 |
-
phase = torch.remainder(phi, 2 * torch.pi)
|
1117 |
-
else:
|
1118 |
-
phase = None
|
1119 |
-
|
1120 |
-
if pitch:
|
1121 |
-
p_tensor = compute_pitch(wav, sample_rate, hop_length=hop_length)[0]
|
1122 |
-
p_tensor = torch.from_numpy(p_tensor)
|
1123 |
-
p_tensor = p_tensor.unsqueeze(0)
|
1124 |
-
# p_tensor = torch.from_numpy(f0_np)
|
1125 |
-
else:
|
1126 |
-
p_tensor = None
|
1127 |
-
|
1128 |
-
if harmonics or aperiodics:
|
1129 |
-
spnp = pw.cheaptrick(wavnp, f0_np, t, sample_rate, fft_size=256)
|
1130 |
-
apnp = pw.d4c(wavnp, f0_np, t, sample_rate, fft_size=256)
|
1131 |
-
harmonic_tensor = torch.from_numpy(spnp)
|
1132 |
-
aperiodic_tensor = torch.from_numpy(apnp)
|
1133 |
-
harmonic_tensor = harmonic_tensor[:, :128].contiguous().T
|
1134 |
-
aperiodic_tensor = aperiodic_tensor[:, :128].contiguous().T
|
1135 |
-
harmonic_tensor = torch.where(harmonic_tensor == 0.0, torch.zeros_like(harmonic_tensor), harmonic_tensor / 1.0)
|
1136 |
-
aperiodic_tensor = torch.where(aperiodic_tensor == 0.0, torch.zeros_like(aperiodic_tensor), aperiodic_tensor / 1.0)
|
1137 |
-
else:
|
1138 |
-
harmonic_tensor = None
|
1139 |
-
aperiodic_tensor = None
|
1140 |
-
|
1141 |
-
if waveform:
|
1142 |
-
wave_tensor = wav
|
1143 |
-
else:
|
1144 |
-
wave_tensor = None
|
1145 |
-
|
1146 |
-
if dummy:
|
1147 |
-
if spectrogram_tensor is not None:
|
1148 |
-
dummy_tensor = torch.ones_like(spectrogram_tensor)
|
1149 |
-
elif p_tensor is not None:
|
1150 |
-
dummy_tensor = torch.ones_like(p_tensor)
|
1151 |
-
elif f0_tensor is not None:
|
1152 |
-
dummy_tensor = torch.ones_like(f0_tensor)
|
1153 |
-
elif f0t_tensor is not None:
|
1154 |
-
dummy_tensor = torch.ones_like(f0t_tensor)
|
1155 |
-
else:
|
1156 |
-
batch_size = 128
|
1157 |
-
seq_len = 1024
|
1158 |
-
dummy_tensor = torch.ones(batch_size, seq_len)
|
1159 |
-
dummy_tensor = dummy_tensor.to(device)
|
1160 |
-
|
1161 |
-
else:
|
1162 |
-
dummy_tensor = None
|
1163 |
-
|
1164 |
-
if debug:
|
1165 |
-
|
1166 |
-
print(f"['f0']: {f0_tensor.shape if f0 else None}")
|
1167 |
-
print(f"['f0t']: {f0t_tensor.shape if f0t else None}")
|
1168 |
-
print(f"['harmonic']: {harmonic_tensor.shape if harmonics else None}")
|
1169 |
-
print(f"['aperiodic']: {aperiodic_tensor.shape if aperiodics else None}")
|
1170 |
-
print(f"['spectrogram']: {spectrogram_tensor.shape if spec else None}")
|
1171 |
-
print(f"['waveform']: {wave_tensor.shape if waveform else None}")
|
1172 |
-
print(f"['labels']: {len(labels) if labels else None}")
|
1173 |
-
print(f"['phase']: {phase.shape if phase else None}")
|
1174 |
-
print(f"['pitch']: {p_tensor.shape if pitch else None}")
|
1175 |
-
print(f"['crepe_time']: {crepe_time.shape if crepe else None}")
|
1176 |
-
print(f"['crepe_frequency']: {crepe_frequency.shape if crepe else None}")
|
1177 |
-
print(f"['crepe_confidence']: {crepe_confidence.shape if crepe else None}")
|
1178 |
-
print(f"['crepe_activation']: {crepe_activation.shape if crepe else None}")
|
1179 |
-
print(f"['dummy']: {dummy_tensor.shape if dummy else None}")
|
1180 |
-
|
1181 |
-
return {
|
1182 |
-
"waveform": wave_tensor if waveform else None,
|
1183 |
-
"spectrogram": spectrogram_tensor if spec else None,
|
1184 |
-
"f0": f0_tensor if f0 else None,
|
1185 |
-
"f0t": f0t_tensor if f0t else None,
|
1186 |
-
"pitch": p_tensor if pitch else None,
|
1187 |
-
"harmonic": harmonic_tensor if harmonics else None,
|
1188 |
-
"aperiodic": aperiodic_tensor if aperiodics else None,
|
1189 |
-
"labels": labels,
|
1190 |
-
"phase": phase if phase_mod else None,
|
1191 |
-
"crepe_time": crepe_time if crepe else None,
|
1192 |
-
"crepe_frequency": crepe_frequency if crepe else None,
|
1193 |
-
"crepe_confidence": crepe_confidence if crepe else None,
|
1194 |
-
"crepe_activation": crepe_activation if crepe else None,
|
1195 |
-
"dummy": dummy_tensor if dummy else None,
|
1196 |
-
}
|
1197 |
-
|
1198 |
-
def prepare_datasets(tokenizer, token, sanity_check=False, sample_rate=16000, streaming=False,
|
1199 |
-
load_saved=False, save_dataset=False, cache_dir=None, extract_args=None, max_ctx=2048):
|
1200 |
-
|
1201 |
-
if extract_args is None:
|
1202 |
-
extract_args = {
|
1203 |
-
"waveform": False,
|
1204 |
-
"spec": False,
|
1205 |
-
"f0": False,
|
1206 |
-
"f0t": False,
|
1207 |
-
"pitch": False,
|
1208 |
-
"harmonic": False,
|
1209 |
-
"aperiodic": False,
|
1210 |
-
"sample_rate": 16000,
|
1211 |
-
"hop_length": 256,
|
1212 |
-
"mode": "mean",
|
1213 |
-
"debug": False,
|
1214 |
-
"phase_mod": False,
|
1215 |
-
"crepe": False,
|
1216 |
-
"dummy": False,
|
1217 |
-
}
|
1218 |
-
|
1219 |
-
if load_saved:
|
1220 |
-
if cache_dir is None:
|
1221 |
-
cache_dir = "./processed_datasets"
|
1222 |
-
else:
|
1223 |
-
cache_dir = cache_dir
|
1224 |
-
|
1225 |
-
os.makedirs(cache_dir, exist_ok=True)
|
1226 |
-
cache_file_train = os.path.join(cache_dir, "train.arrow")
|
1227 |
-
cache_file_test = os.path.join(cache_dir, "test.arrow")
|
1228 |
-
|
1229 |
-
if os.path.exists(cache_file_train) and os.path.exists(cache_file_test):
|
1230 |
-
from datasets import Dataset
|
1231 |
-
train_dataset = Dataset.load_from_disk(cache_file_train)
|
1232 |
-
test_dataset = Dataset.load_from_disk(cache_file_test)
|
1233 |
-
return train_dataset, test_dataset
|
1234 |
-
|
1235 |
-
if sanity_check:
|
1236 |
-
test = load_dataset(
|
1237 |
-
"google/fleurs", "en_us", token=token, split="test", trust_remote_code=True, streaming=streaming).cast_column("audio", Audio(sampling_rate=sample_rate)).take(1)
|
1238 |
-
|
1239 |
-
dataset = test.map(
|
1240 |
-
lambda x: extract_features(x, tokenizer, **extract_args),
|
1241 |
-
remove_columns=test.column_names)
|
1242 |
-
|
1243 |
-
train_dataset = dataset
|
1244 |
-
test_dataset = dataset
|
1245 |
-
return train_dataset, test_dataset
|
1246 |
-
|
1247 |
-
else:
|
1248 |
-
|
1249 |
-
def filter_func(x):
|
1250 |
-
return (0 < len(x["transcription"]) < max_ctx and
|
1251 |
-
len(x["audio"]["array"]) > 0 and
|
1252 |
-
len(x["audio"]["array"]) < max_ctx * 160)
|
1253 |
-
|
1254 |
-
raw_train = load_dataset(
|
1255 |
-
"google/fleurs", "en_us", token=token, split="train", trust_remote_code=True, streaming=streaming).take(1000)
|
1256 |
-
raw_test = load_dataset(
|
1257 |
-
"google/fleurs", "en_us", token=token, split="test", trust_remote_code=True, streaming=streaming).take(100)
|
1258 |
-
|
1259 |
-
raw_train = raw_train.filter(filter_func)
|
1260 |
-
raw_test = raw_test.filter(filter_func)
|
1261 |
-
raw_train = raw_train.cast_column("audio", Audio(sampling_rate=sample_rate))
|
1262 |
-
raw_test = raw_test.cast_column("audio", Audio(sampling_rate=sample_rate))
|
1263 |
-
|
1264 |
-
train_dataset = raw_train.map(
|
1265 |
-
lambda x: extract_features(x, tokenizer, **extract_args), remove_columns=raw_train.column_names)
|
1266 |
-
|
1267 |
-
test_dataset = raw_test.map(
|
1268 |
-
lambda x: extract_features(x, tokenizer, **extract_args), remove_columns=raw_test.column_names)
|
1269 |
-
train_dataset.save_to_disk(cache_file_train) if save_dataset is True else None
|
1270 |
-
test_dataset.save_to_disk(cache_file_test) if save_dataset is True else None
|
1271 |
-
|
1272 |
-
return train_dataset, test_dataset
|
1273 |
-
|
1274 |
-
def get_feature_encoder(feature: str, mels: int, input_dims: int, dims: int, head: int, layer: int, act=None, features=None) -> nn.Module:
|
1275 |
-
if feature == "spectrogram":
|
1276 |
-
return FEncoder(mels=mels, input_dims=input_dims, dims=dims, head=head, layer=layer, act=act, feature=feature, features=features)
|
1277 |
-
elif feature == "waveform":
|
1278 |
-
return WEncoder(input_dims, dims, head, layer, act, feature, features)
|
1279 |
-
elif feature == "pitch":
|
1280 |
-
return PEncoder(input_dims, dims, head, layer, act, feature, features)
|
1281 |
-
else:
|
1282 |
-
raise ValueError(f"Unknown feature type: {feature}")
|
1283 |
-
|
1284 |
-
class FEncoder(nn.Module):
|
1285 |
-
def __init__(self, mels, input_dims, dims, head, layer, act, feature, features, use_rope=False, spec_shape=None, debug=[]):
|
1286 |
-
super().__init__()
|
1287 |
-
|
1288 |
-
self.head = head
|
1289 |
-
self.head_dim = dims // head
|
1290 |
-
self.dropout = 0.01
|
1291 |
-
self.use_rope = use_rope
|
1292 |
-
self.dims = dims
|
1293 |
-
self.debug = debug
|
1294 |
-
self.feature = feature
|
1295 |
-
self.mels = mels
|
1296 |
-
self.input_dims = input_dims
|
1297 |
-
act_fn = get_activation(act)
|
1298 |
-
|
1299 |
-
self.encoder = nn.Sequential(
|
1300 |
-
Conv1d(mels, dims, kernel_size=3, stride=1, padding=1), act_fn,
|
1301 |
-
Conv1d(dims, dims, kernel_size=3, stride=1, padding=1), act_fn,
|
1302 |
-
Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims), act_fn)
|
1303 |
-
|
1304 |
-
if use_rope:
|
1305 |
-
if spec_shape is not None:
|
1306 |
-
self.rope = rotary(dims=dims, head=head, radii=False, debug=[], use_pbias=False, axial=False, spec_shape=spec_shape) # type: ignore
|
1307 |
-
else:
|
1308 |
-
self.rope = None
|
1309 |
-
self.positional = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)
|
1310 |
-
self.norm = RMSNorm(dims)
|
1311 |
-
|
1312 |
-
def apply_rope_to_features(self, x, xa=None, mask=None, feats=None, feature="audio", layer="FEncoder"):
|
1313 |
-
batch, ctx, dims = x.shape
|
1314 |
-
x = x.view(batch, ctx, self.head, self.head_dim).permute(0, 2, 1, 3)
|
1315 |
-
freqs = self.rope(ctx, feats=feats, feature=feature, layer=layer)# type: ignore
|
1316 |
-
x = self.rope.apply_rotary(x, freqs)# type: ignore
|
1317 |
-
x = x.permute(0, 2, 1, 3).contiguous().view(batch, ctx, dims)
|
1318 |
-
|
1319 |
-
return x
|
1320 |
-
|
1321 |
-
def forward(self, x, xa=None, mask=None, feats=None, feature="audio", layer="FEncoder"):
|
1322 |
-
x = self.encoder(x).permute(0, 2, 1)
|
1323 |
-
if self.use_rope:
|
1324 |
-
x = self.apply_rope_to_features(x, xa=xa, mask=mask, feats=feats, feature=feature, layer=layer)
|
1325 |
-
else:
|
1326 |
-
x = x + self.positional(x.shape[1], x.shape[-1], 10000).to(device, dtype)
|
1327 |
-
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
1328 |
-
print(f"feature encoder: {x.shape} {feature}") if "fencoder" in self.debug else None
|
1329 |
-
x = self.norm(x)
|
1330 |
-
return x
|
1331 |
-
|
1332 |
-
class WEncoder(nn.Module): # waveform encoder
|
1333 |
-
def __init__(self, input_dims, dims, head, layer, kernel_size, act, use_rope=False, debug=[], spec_shape=None):
|
1334 |
-
super().__init__()
|
1335 |
-
|
1336 |
-
self.head = head
|
1337 |
-
self.head_dim = dims // head
|
1338 |
-
self.dropout = 0.01
|
1339 |
-
self.use_rope = use_rope
|
1340 |
-
self.dims = dims
|
1341 |
-
self.debug = debug
|
1342 |
-
act_fn = get_activation(act)
|
1343 |
-
self.target_length = None
|
1344 |
-
self.encoder = nn.Sequential(
|
1345 |
-
Conv1d(input_dims, dims//4, kernel_size=15, stride=4, padding=7), act_fn,
|
1346 |
-
Conv1d(dims//4, dims//2, kernel_size=7, stride=2, padding=3), act_fn,
|
1347 |
-
Conv1d(dims//2, dims, kernel_size=5, stride=2, padding=2), act_fn)
|
1348 |
-
|
1349 |
-
if use_rope:
|
1350 |
-
if spec_shape is not None:
|
1351 |
-
self.rope = rotary(dims=dims, head=head, radii=False, debug=[], use_pbias=False, axial=False, spec_shape=spec_shape)# type: ignore
|
1352 |
-
else:
|
1353 |
-
self.rope = None
|
1354 |
-
self.positional = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)
|
1355 |
-
self.norm = RMSNorm(dims)
|
1356 |
-
|
1357 |
-
def apply_rope_to_features(self, x, xa=None, mask=None, feats=None, feature="waveform", layer="WEncoder"):
|
1358 |
-
batch, ctx, dims = x.shape
|
1359 |
-
x = x.view(batch, ctx, self.head, self.head_dim).permute(0, 2, 1, 3)
|
1360 |
-
freqs = self.rope(ctx, feats=feats, feature=feature, layer=layer)# type: ignore
|
1361 |
-
x = self.rope.apply_rotary(x, freqs)# type: ignore
|
1362 |
-
x = x.permute(0, 2, 1, 3).contiguous().view(batch, ctx, dims)
|
1363 |
-
return x
|
1364 |
-
|
1365 |
-
def forward(self, x, xa=None, mask=None, feats= None, feature="waveform", layer = "WEncoder"):
|
1366 |
-
x = self.encoder(x).permute(0, 2, 1) # (batch, time, dims)
|
1367 |
-
if self.target_length and x.shape[1] != self.target_length:
|
1368 |
-
x = F.adaptive_avg_pool1d(x.transpose(1, 2), self.target_length).transpose(1, 2)
|
1369 |
-
if self.use_rope:
|
1370 |
-
x = self.apply_rope_to_features(x, xa=xa, mask=mask, feats=feats, feature=feature, layer=layer)
|
1371 |
-
else:
|
1372 |
-
x = x + self.positional(x.shape[1], x.shape[-1], 10000).to(device, dtype)
|
1373 |
-
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
1374 |
-
print(f"waveform encoder: {x.shape} {feature}") if "fencoder" in self.debug else None
|
1375 |
-
return self.norm(x)
|
1376 |
-
|
1377 |
-
class PEncoder(nn.Module): # pitch encoder
|
1378 |
-
def __init__(self, input_dims, dims, head, layer, kernel_size, act, use_rope=False, debug=[], one_shot=False, spec_shape=None):
|
1379 |
-
super().__init__()
|
1380 |
-
|
1381 |
-
self.head = head
|
1382 |
-
self.head_dim = dims // head
|
1383 |
-
self.dims = dims
|
1384 |
-
self.dropout = 0.01
|
1385 |
-
self.use_rope = use_rope
|
1386 |
-
self.debug = debug
|
1387 |
-
act_fn = get_activation(act)
|
1388 |
-
|
1389 |
-
self.attend_pitch = False
|
1390 |
-
|
1391 |
-
if self.attend_pitch:
|
1392 |
-
self.q, self.k, self.v, self.o, self.scale = qkv_init(dims, head)
|
1393 |
-
self.mlp = nn.Sequential(
|
1394 |
-
nn.Linear(dims, dims),
|
1395 |
-
nn.ReLU(),
|
1396 |
-
nn.Linear(dims, dims),
|
1397 |
-
)
|
1398 |
-
else:
|
1399 |
-
self.q, self.k, self.v, self.o, self.scale = None, None, None, None, None
|
1400 |
-
self.mlp = None
|
1401 |
-
|
1402 |
-
self.pitch_encoder = nn.Sequential(
|
1403 |
-
Conv1d(input_dims, dims, kernel_size=7, stride=1, padding=3), act_fn,
|
1404 |
-
Conv1d(dims, dims, kernel_size=5, stride=1, padding=2), act_fn,
|
1405 |
-
Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims), act_fn)
|
1406 |
-
|
1407 |
-
# self.spectrogram_encoder = nn.Sequential(
|
1408 |
-
# Conv1d(input_dims, dims, kernel_size=3, stride=1, padding=1), act_fn,
|
1409 |
-
# Conv1d(dims, dims, kernel_size=3, stride=1, padding=1), act_fn,
|
1410 |
-
# Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims), act_fn)
|
1411 |
-
|
1412 |
-
# self.waveform_encoder = nn.Sequential(
|
1413 |
-
# Conv1d(input_dims, dims//4, kernel_size=15, stride=4, padding=7), act_fn,
|
1414 |
-
# Conv1d(dims//4, dims//2, kernel_size=7, stride=2, padding=3), act_fn,
|
1415 |
-
# Conv1d(dims//2, dims, kernel_size=5, stride=2, padding=2), act_fn)
|
1416 |
-
|
1417 |
-
if use_rope:
|
1418 |
-
self.rope = rotary(dims=dims, head=head, radii=False, debug=[], use_pbias=False, axial=False, spec_shape=spec_shape)# type: ignore
|
1419 |
-
else:
|
1420 |
-
self.rope = None
|
1421 |
-
self.positional = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)
|
1422 |
-
self.norm = RMSNorm(dims)
|
1423 |
-
|
1424 |
-
def rope_to_feature(self, x, xa=None, mask=None, feats=None, feature="pitch", layer="PEncoder"):
|
1425 |
-
batch, ctx, dims = x.shape
|
1426 |
-
x = x.view(batch, ctx, self.head, self.head_dim).permute(0, 2, 1, 3)
|
1427 |
-
freqs = self.rope(ctx, feats=feats, feature=feature, layer=layer) # type: ignore
|
1428 |
-
x = self.rope.apply_rotary(x, freqs)# type: ignore
|
1429 |
-
x = x.permute(0, 2, 1, 3).contiguous().view(batch, ctx, dims)
|
1430 |
-
return x
|
1431 |
-
|
1432 |
-
def forward(self, x, xa=None, mask=None, feats= None, feature="pitch", layer="PEncoder"):
|
1433 |
-
# f0=x
|
1434 |
-
# freqs = self.rope(f0.shape[1], feats=feats, feature=feature, layer=layer)
|
1435 |
-
if x.dim() == 2:
|
1436 |
-
x = x.unsqueeze(0)
|
1437 |
-
if feature == "pitch":
|
1438 |
-
x = self.pitch_encoder(x).permute(0, 2, 1)
|
1439 |
-
# elif feature == "spectrogram":
|
1440 |
-
# x = self.spectrogram_encoder(x).permute(0, 2, 1)
|
1441 |
-
# elif feature == "waveform":
|
1442 |
-
# x = self.waveform_encoder(x).permute(0, 2, 1)
|
1443 |
-
|
1444 |
-
# if self.target_length and x.shape[1] != self.target_length:
|
1445 |
-
# x = F.adaptive_avg_pool1d(x.transpose(1, 2), self.target_length).transpose(1, 2)
|
1446 |
-
|
1447 |
-
if self.use_rope:
|
1448 |
-
x = self.rope_to_feature(x, xa=xa, mask=mask, feats=feats, feature=feature, layer=layer)
|
1449 |
-
|
1450 |
-
x = x + self.positional(x.shape[1], x.shape[-1], 10000).to(device, dtype)
|
1451 |
-
if self.mlp is not None:
|
1452 |
-
x = self.mlp(x)
|
1453 |
-
|
1454 |
-
if self.attend_pitch:
|
1455 |
-
if xa is not None:
|
1456 |
-
q, k, v = create_qkv(self.q, self.k, self.v, x=xa, xa=x, head=self.head)
|
1457 |
-
out, _ = calculate_attention(q, k, v, mask=None, temperature=1.0, is_causal=True)
|
1458 |
-
|
1459 |
-
x = x + out
|
1460 |
-
|
1461 |
-
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
1462 |
-
x = self.norm(x)
|
1463 |
-
print(f"Pitch encoder: {x.shape} {feature}") if "fencoder" in self.debug else None
|
1464 |
-
return x
|
1465 |
-
|
1466 |
-
|
1467 |
-
@dataclass
|
1468 |
-
class DataCollator:
|
1469 |
-
tokenizer: Any
|
1470 |
-
|
1471 |
-
def __call__(self, features: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]:
|
1472 |
-
all_keys = set()
|
1473 |
-
for f in features:
|
1474 |
-
all_keys.update(f.keys())
|
1475 |
-
batch = {}
|
1476 |
-
pad_token_id = getattr(self.tokenizer, 'pad_token_id', 0)
|
1477 |
-
bos_token_id = getattr(self.tokenizer, 'bos_token_id', 1)
|
1478 |
-
eos_token_id = getattr(self.tokenizer, 'eos_token_id', 2)
|
1479 |
-
|
1480 |
-
for key in all_keys:
|
1481 |
-
if key == "labels":
|
1482 |
-
labels_list = [f["labels"] for f in features]
|
1483 |
-
max_len = max(len(l) for l in labels_list) # noqa: E741
|
1484 |
-
all_ids, all_labels = [], []
|
1485 |
-
for label in labels_list:
|
1486 |
-
label_list = label.tolist() if isinstance(label, torch.Tensor) else label
|
1487 |
-
decoder_input = [bos_token_id] + label_list
|
1488 |
-
label_eos = label_list + [eos_token_id]
|
1489 |
-
input_len = max_len + 1 - len(decoder_input)
|
1490 |
-
label_len = max_len + 1 - len(label_eos)
|
1491 |
-
padded_input = decoder_input + [pad_token_id] * input_len
|
1492 |
-
padded_labels = label_eos + [pad_token_id] * label_len
|
1493 |
-
all_ids.append(padded_input)
|
1494 |
-
all_labels.append(padded_labels)
|
1495 |
-
batch["input_ids"] = torch.tensor(all_ids, dtype=torch.long)
|
1496 |
-
batch["labels"] = torch.tensor(all_labels, dtype=torch.long)
|
1497 |
-
|
1498 |
-
elif key in ["spectrogram", "waveform", "pitch", "harmonic", "aperiodic", "f0t", "f0", "phase", "crepe_time", "crepe_frequency", "crepe_confidence", "crepe_activation", "dummy"]:
|
1499 |
-
items = [f[key] for f in features if key in f]
|
1500 |
-
items = [item for item in items if item is not None]
|
1501 |
-
if not items:
|
1502 |
-
continue
|
1503 |
-
items = [torch.tensor(item) if not isinstance(item, torch.Tensor) else item for item in items]
|
1504 |
-
max_len = max(item.shape[-1] for item in items)
|
1505 |
-
padded = []
|
1506 |
-
for item in items:
|
1507 |
-
pad_width = max_len - item.shape[-1]
|
1508 |
-
if pad_width > 0:
|
1509 |
-
pad_item = F.pad(item, (0, pad_width), mode='constant', value=pad_token_id)
|
1510 |
-
else:
|
1511 |
-
pad_item = item
|
1512 |
-
padded.append(pad_item)
|
1513 |
-
batch[key] = torch.stack(padded)
|
1514 |
-
# if key == "spectrogram":
|
1515 |
-
# batch["spectrogram"] = batch[key]
|
1516 |
-
return batch
|
1517 |
-
|
1518 |
-
def levenshtein(reference_words, hypothesis_words):
|
1519 |
-
m, n = len(reference_words), len(hypothesis_words)
|
1520 |
-
dist_matrix = [[0 for _ in range(n+1)] for _ in range(m+1)]
|
1521 |
-
for i in range(m+1):
|
1522 |
-
dist_matrix[i][0] = i
|
1523 |
-
for j in range(n+1):
|
1524 |
-
dist_matrix[0][j] = j
|
1525 |
-
for i in range(1, m+1):
|
1526 |
-
for j in range(1, n+1):
|
1527 |
-
if reference_words[i-1] == hypothesis_words[j-1]:
|
1528 |
-
dist_matrix[i][j] = dist_matrix[i-1][j-1]
|
1529 |
-
else:
|
1530 |
-
substitution = dist_matrix[i-1][j-1] + 1
|
1531 |
-
insertion = dist_matrix[i][j-1] + 1
|
1532 |
-
deletion = dist_matrix[i-1][j] + 1
|
1533 |
-
dist_matrix[i][j] = min(substitution, insertion, deletion)
|
1534 |
-
return dist_matrix[m][n]
|
1535 |
-
|
1536 |
-
def wer_batch(references, hypotheses):
|
1537 |
-
total_errors = 0
|
1538 |
-
total_words = 0
|
1539 |
-
for ref, hyp in zip(references, hypotheses):
|
1540 |
-
ref_words = ref.lower().split()
|
1541 |
-
errors = levenshtein(ref_words, hyp.lower().split())
|
1542 |
-
total_errors += errors
|
1543 |
-
total_words += len(ref_words)
|
1544 |
-
return (total_errors / total_words) * 100 if total_words > 0 else 0.0
|
1545 |
-
|
1546 |
-
def compute_metrics(pred, tokenizer=None, model=None, print_pred=False, num_samples=0):
|
1547 |
-
def clean(ids, pad_token_id=0, bos_token_id=1, eos_token_id=2):
|
1548 |
-
if isinstance(ids, torch.Tensor):
|
1549 |
-
ids = ids.tolist()
|
1550 |
-
if isinstance(ids[0], (list, torch.Tensor, np.ndarray)):
|
1551 |
-
return [[int(i) for i in seq if i not in (-100, pad_token_id, bos_token_id, eos_token_id)] for seq in ids]
|
1552 |
-
else:
|
1553 |
-
return [int(i) for i in ids if i not in (-100, pad_token_id, bos_token_id, eos_token_id)]
|
1554 |
-
|
1555 |
-
pred_ids = pred.predictions
|
1556 |
-
label_ids = pred.label_ids
|
1557 |
-
|
1558 |
-
if isinstance(pred_ids, tuple):
|
1559 |
-
pred_ids = pred_ids[0]
|
1560 |
-
|
1561 |
-
if not isinstance(pred_ids, torch.Tensor):
|
1562 |
-
pred_ids = torch.tensor(pred_ids)
|
1563 |
-
|
1564 |
-
label_ids = clean(label_ids)
|
1565 |
-
pred_ids = clean(pred_ids)
|
1566 |
-
pred_str = tokenizer.batch_decode(pred_ids)
|
1567 |
-
label_str = tokenizer.batch_decode(label_ids)
|
1568 |
-
|
1569 |
-
if print_pred:
|
1570 |
-
for i in range(min(num_samples, len(pred_ids))):
|
1571 |
-
|
1572 |
-
print(f"Pred tokens: {pred_ids[i]}")
|
1573 |
-
print(f"Label tokens: {label_ids[i]}")
|
1574 |
-
print(f"Pred: '{pred_str[i]}'")
|
1575 |
-
print(f"Label: '{label_str[i]}'")
|
1576 |
-
print("-" * 40)
|
1577 |
-
|
1578 |
-
wer = wer_batch(label_str, pred_str)
|
1579 |
-
if model is not None:
|
1580 |
-
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) / 1_000_000
|
1581 |
-
efficiency_score = (100 - wer) / trainable_params if trainable_params > 0 else 0.0
|
1582 |
-
else:
|
1583 |
-
trainable_params = 0.0
|
1584 |
-
efficiency_score = 0.0
|
1585 |
-
|
1586 |
-
return {
|
1587 |
-
"wer": float(wer),
|
1588 |
-
"efficiency_score": float(efficiency_score),
|
1589 |
-
}
|
1590 |
-
|
1591 |
-
def preprocess_logits_for_metrics(logits, labels):
|
1592 |
-
pred_ids = torch.argmax(logits, dim=-1)
|
1593 |
-
return pred_ids, labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|