Update model.py
Browse files
model.py
CHANGED
@@ -287,11 +287,19 @@ class rotary(nn.Module):
|
|
287 |
def get_bias(self, f0, ctx):
|
288 |
if f0 is None:
|
289 |
return None
|
290 |
-
f0
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
return f0_sim.unsqueeze(0).unsqueeze(0)
|
296 |
|
297 |
def f0proj(self, f0):
|
@@ -313,38 +321,6 @@ class rotary(nn.Module):
|
|
313 |
frames = length / ctx
|
314 |
idx = torch.arange(ctx, device=f0.device)
|
315 |
return f0[idx]
|
316 |
-
|
317 |
-
def align_f0a(self, f0, ctx):
|
318 |
-
if f0.dim() == 3:
|
319 |
-
batch, length, dims = f0.shape
|
320 |
-
if length == ctx:
|
321 |
-
f0 = f0
|
322 |
-
else:
|
323 |
-
frames = length / ctx
|
324 |
-
idx = torch.arange(ctx, device=f0.device)
|
325 |
-
idx = (idx * frames).long().clamp(0, length - 1)
|
326 |
-
f0 = f0[:, idx, :]
|
327 |
-
f0 = f0.mean(dim=(0, -1))
|
328 |
-
return f0
|
329 |
-
if f0.dim() == 2:
|
330 |
-
length, dims = f0.shape
|
331 |
-
if length == ctx:
|
332 |
-
f0 = f0
|
333 |
-
else:
|
334 |
-
frames = length / ctx
|
335 |
-
idx = torch.arange(ctx, device=f0.device)
|
336 |
-
idx = (idx * frames).long().clamp(0, length - 1)
|
337 |
-
f0 = f0[idx, :]
|
338 |
-
f0 = f0.mean(dim=-1)
|
339 |
-
return f0
|
340 |
-
if f0.dim() == 1:
|
341 |
-
length = f0.shape[0]
|
342 |
-
if length == ctx:
|
343 |
-
return f0
|
344 |
-
frames = length / ctx
|
345 |
-
idx = torch.arange(ctx, device=f0.device)
|
346 |
-
idx = (idx * frames).long().clamp(0, length - 1)
|
347 |
-
return f0[idx]
|
348 |
|
349 |
def align_f0(self, ctx, f0):
|
350 |
f0 = self.f0proj(f0)
|
@@ -552,7 +528,6 @@ class MultiheadA(nn.Module):
|
|
552 |
f0 = enc.get("f0", None) if enc is not None else None
|
553 |
pbias = self.rope.get_bias(f0, q2)
|
554 |
if pbias is not None:
|
555 |
-
# print(f"pbias shape: {pbias.shape}, qk shape: {qk.shape}")
|
556 |
qk = qk + pbias
|
557 |
token_ids = k[:, :, :, 0]
|
558 |
zscale = torch.ones_like(token_ids)
|
|
|
287 |
def get_bias(self, f0, ctx):
|
288 |
if f0 is None:
|
289 |
return None
|
290 |
+
if f0.dim() == 1:
|
291 |
+
length = f0.shape[0]
|
292 |
+
if length == ctx:
|
293 |
+
return f0
|
294 |
+
frames = length / ctx
|
295 |
+
idx = torch.arange(ctx, device=f0.device)
|
296 |
+
idx = (idx * frames).long().clamp(0, length - 1)
|
297 |
+
f0 = f0[idx]
|
298 |
+
f0_norm = (f0 - f0.mean()) / (f0.std() + 1e-8)
|
299 |
+
# f0_sim = torch.exp(-torch.cdist(f0_norm.unsqueeze(1),
|
300 |
+
# f0_norm.unsqueeze(1)))
|
301 |
+
diff = f0_norm[:, None] - f0_norm[None, :]
|
302 |
+
f0_sim = torch.exp(-diff.pow(2))
|
303 |
return f0_sim.unsqueeze(0).unsqueeze(0)
|
304 |
|
305 |
def f0proj(self, f0):
|
|
|
321 |
frames = length / ctx
|
322 |
idx = torch.arange(ctx, device=f0.device)
|
323 |
return f0[idx]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
def align_f0(self, ctx, f0):
|
326 |
f0 = self.f0proj(f0)
|
|
|
528 |
f0 = enc.get("f0", None) if enc is not None else None
|
529 |
pbias = self.rope.get_bias(f0, q2)
|
530 |
if pbias is not None:
|
|
|
531 |
qk = qk + pbias
|
532 |
token_ids = k[:, :, :, 0]
|
533 |
zscale = torch.ones_like(token_ids)
|