Update README.md
Browse files
README.md
CHANGED
@@ -66,21 +66,11 @@ These visualizations help confirm that:
|
|
66 |
- The signal is strong enough to potentially help the model understand pitch-sensitive aspects of speech
|
67 |
|
68 |
----
|
69 |
-
#### Domain-Specific ASR
|
70 |
|
71 |
#### freqs = (theta / 220.0) * 700 * (torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 8000/700)), dim // 2, device=device, dtype=dtype) / 2595) - 1) / 1000
|
72 |
|
73 |
-
#### Static frequency's are perfectly fine for text models but not for NLP
|
74 |
-
-----
|
75 |
-
|
76 |
-
1000 steps no f0:
|
77 |
-
|
78 |
-
<img width="470" alt="123" src="https://github.com/user-attachments/assets/1b3ca1e8-0b7d-47dd-802b-5eda9537ae13" />
|
79 |
-
|
80 |
-
1000 steps with f0 / theta substitutions:
|
81 |
-
|
82 |
-
<img width="470" alt="65356" src="https://github.com/user-attachments/assets/84624fc4-5def-4e9f-9cdd-c350b80ec348" />
|
83 |
-
|
84 |
|
85 |
----
|
86 |
|
|
|
66 |
- The signal is strong enough to potentially help the model understand pitch-sensitive aspects of speech
|
67 |
|
68 |
----
|
69 |
+
#### Domain-Specific ASR/NLP.
|
70 |
|
71 |
#### freqs = (theta / 220.0) * 700 * (torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 8000/700)), dim // 2, device=device, dtype=dtype) / 2595) - 1) / 1000
|
72 |
|
73 |
+
#### Static frequency's are perfectly fine for text models but not for NLP
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
----
|
76 |
|