Sin2pi commited on
Commit
f7847b1
·
verified ·
1 Parent(s): 5470638

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -43
README.md CHANGED
@@ -21,8 +21,7 @@ tags:
21
 
22
  ---
23
 
24
-
25
- ASR model + pitch aware relative positional embeddings.
26
 
27
  <img width="1363" height="732" alt="pitch_spectrogram" src="https://github.com/user-attachments/assets/ceb65e94-7df4-41b7-aa3d-c4aa4c6c0717" />
28
 
@@ -64,26 +63,33 @@ So, for each element:
64
 
65
  Reference: [PyTorch Documentation - torch.polar]https:pytorch.orgdocsstablegeneratedtorch.polar.html
66
 
67
- Here are the abbreviated steps for replacing theta and radius in the rotary forward:
 
 
 
 
 
 
 
 
68
 
69
  ```python
70
 
71
- self.theta = nn.Parameter((torch.tensor(10000, device=device, dtype=dtype)), requires_grad=True)
72
 
73
- # This performs significantly better than standard
 
74
 
75
  pos = torch.arange(ctx, device=device, dtype=dtype)
76
  freqs = (self.theta / 220.0) * 700 * (torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 8000/700)), self.head_dim // 2, device=device, dtype=dtype) / 2595) - 1) / 1000
77
  freqs = pos[:, None] * freqs
78
 
79
  # standard
80
- pos = torch.arange(ctx, dtype=torch.float32, device=device).unsqueeze(1)
81
- dim = torch.arange(0, self.head_dim, 2, dtype=torch.float32, device=device).unsqueeze(0)
82
- freqs = pos / (self.theta ** (dim / self.head_dim))
83
-
84
-
85
 
86
- ####
87
 
88
  def _apply_radii(self, freqs, f0, ctx):
89
  if self.radii and f0 is not None:
@@ -92,38 +98,6 @@ Here are the abbreviated steps for replacing theta and radius in the rotary forw
92
  else:
93
  return torch.polar(torch.ones_like(freqs), freqs), None
94
 
95
- # wip
96
-
97
- def compute_pitch_tokens(wav, sample_rate, labels, mode="mean"):
98
- import pyworld as pw
99
- wavnp = wav.numpy().astype(np.float64)
100
- f0_np, t = pw.dio(wavnp, sample_rate, frame_period=hop_length / sample_rate * 1000)
101
- f0_np = pw.stonemask(wavnp, f0_np, t, sample_rate)
102
- t = torch.from_numpy(t)
103
- audio_duration = len(wav) / sample_rate
104
- T = len(labels)
105
- tok_dur_sec = audio_duration / T
106
- token_starts = torch.arange(T) * tok_dur_sec
107
- token_ends = token_starts + tok_dur_sec
108
- start_idx = torch.searchsorted(t, token_starts, side="left")
109
- end_idx = torch.searchsorted(t, token_ends, side="right")
110
- pitch_tok = torch.zeros(T, dtype=torch.float32)
111
- for i in range(T):
112
- lo, hi = start_idx[i], max(start_idx[i]+1, end_idx[i]) # type: ignore
113
- segment = f0_np[lo:hi]
114
- if mode == "mean":
115
- pitch_tok[i] = segment.mean()
116
- elif mode == "median":
117
- pitch_tok[i] = torch.median(segment)
118
- else:
119
- pitch_tok[i] = segment[-1]
120
- pitch_tok[pitch_tok < 100.0] = 0.0
121
- bos_pitch = pitch_tok[0] if len(pitch_tok) > 0 else 0.0
122
- f0t_tensor = torch.cat([torch.tensor([bos_pitch]), pitch_tok])
123
- f0t_tensor = torch.where(f0t_tensor == 0.0, torch.zeros_like(f0t_tensor), (f0t_tensor - 71.0) / (500.0 - 71.0))
124
- return pitch_tokens
125
-
126
-
127
 
128
  ```python
129
 
@@ -263,3 +237,5 @@ The Complex Frequency Result:
263
 
264
 
265
 
 
 
 
21
 
22
  ---
23
 
24
+ ASR model
 
25
 
26
  <img width="1363" height="732" alt="pitch_spectrogram" src="https://github.com/user-attachments/assets/ceb65e94-7df4-41b7-aa3d-c4aa4c6c0717" />
27
 
 
63
 
64
  Reference: [PyTorch Documentation - torch.polar]https:pytorch.orgdocsstablegeneratedtorch.polar.html
65
 
66
+
67
+
68
+
69
+ <img width="349" height="577" alt="standard" src="https://github.com/user-attachments/assets/450f814f-5e9c-4599-8f85-9c5620c42394" />
70
+
71
+
72
+
73
+ <img width="400" height="500" alt="standardl" src="https://github.com/user-attachments/assets/6197a6a4-c778-443c-9a04-62f99d01fdac" />
74
+
75
 
76
  ```python
77
 
 
78
 
79
+
80
+ # Modified freq calculation:
81
 
82
  pos = torch.arange(ctx, device=device, dtype=dtype)
83
  freqs = (self.theta / 220.0) * 700 * (torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 8000/700)), self.head_dim // 2, device=device, dtype=dtype) / 2595) - 1) / 1000
84
  freqs = pos[:, None] * freqs
85
 
86
  # standard
87
+ # pos = torch.arange(ctx, dtype=torch.float32, device=device).unsqueeze(1)
88
+ # dim = torch.arange(0, self.head_dim, 2, dtype=torch.float32, device=device)
89
+ # freqs = pos / (self.theta ** (dim / self.head_dim))
90
+ # dim = torch.arange(0, self.head_dim, 2, dtype=torch.float32, device=device)
91
+ ```
92
 
 
93
 
94
  def _apply_radii(self, freqs, f0, ctx):
95
  if self.radii and f0 is not None:
 
98
  else:
99
  return torch.polar(torch.ones_like(freqs), freqs), None
100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
 
102
  ```python
103
 
 
237
 
238
 
239
 
240
+
241
+