File size: 6,703 Bytes
7cd0692 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 4 16:44:12 2023
@author: lin
"""
import glob
import sys
sys.path.append('../../..')
import os
import cv2
import json
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# from utils.bbox_op import non_max_supression
def one_multiple_iou(box, boxes, box_area, boxes_area):
"""
Compute the intersection over union. 1 to multiple
Inputs:
box: numpy array with 1 box, ymin, xmin, ymax, xmax
boxes: numpy array with shape [N, 4] holding N boxes
Outputs:
a numpy array with shape [N*1] representing box areas
"""
# this is the iou of the box against all other boxes
assert boxes.shape[0] == boxes_area.shape[0]
ymin = np.maximum(box[0], boxes[:, 0]) # bottom
xmin = np.maximum(box[1], boxes[:, 1]) # left
ymax = np.minimum(box[2], boxes[:, 2]) # top
xmax = np.minimum(box[3], boxes[:, 3]) # rifht
# we ignore areas where the intersection side would be negative
# this is done by using maxing the side length by 0
intersections = np.maximum(ymax - ymin, 0) * np.maximum(xmax - xmin, 0)
# each union is then the box area
# added to each other box area minusing their intersection calculated above
unions = box_area + boxes_area - intersections
# element wise division
# if the intersection is 0, then their ratio is 0
ious = intersections / unions
return ious
def select_non_overlapping_bboxes(boxes, scores, iou_th):
ymin = boxes[:, 0]
ymax = boxes[:, 2]
xmin = boxes[:, 1]
xmax = boxes[:, 3]
# box coordinate ranges are inclusive-inclusive
areas = (ymax - ymin) * (xmax - xmin)
scores_indexes = list(np.argsort(scores))
keep_idx = []
while len(scores_indexes) > 0:
index = scores_indexes.pop()
keep_idx.append(index)
ious = one_multiple_iou(
boxes[index], boxes[scores_indexes], areas[index], areas[scores_indexes]
)
filtered_indexes = set((ious > iou_th).nonzero()[0])
scores_indexes = [
v for (i, v) in enumerate(scores_indexes) if i not in filtered_indexes
]
return keep_idx
def non_max_supression(boxes, scores, classes, iou_th):
"""
remover overlaped boundingboxes. Starting by the box with the highest score
if the iou is greater than the threshold, remove it, else keep it.
Inputs:
boxes: numpy array with shape [N, 4] holding N boxes。 [ymin, xmin, ymax, xmax]
scores: numpy array with shape [N, 1] holding the prediction score of each box
classes: numpy array with shape [N, 1] holding the class that each box belongs
iou_th: intersection over union threshold to consider the overlapping boxes have detect 2 objects
Output:
boxes, scores, classes with intersection over union ratio less than the threshold.
"""
# assert boxes.shape[0] == scores.shape[0]
if len(scores) == 0:
return boxes, scores, classes
keep_idx = select_non_overlapping_bboxes(boxes, scores, iou_th)
return boxes[keep_idx], scores[keep_idx], classes[keep_idx]
def preprocess(img_path):
image_np = cv2.imread(img_path)
image_np = center_crop(image_np)
image_np = cv2.resize(image_np, (640, 640))
#image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
image_np = image_np.astype(float)
image_np /= 255.0
return image_np
def center_crop(img):
width, height = img.shape[1], img.shape[0]
crop_size = width if width < height else height
mid_x, mid_y = int(width/2), int(height/2)
cs2 = int(crop_size/2)
crop_img = img[mid_y-cs2:mid_y+cs2, mid_x-cs2:mid_x+cs2]
return crop_img
def postprocess_prediction(preds):
bboxes = preds[0][:4]
class_prob = preds[0, 4:]
classes = np.argmax(class_prob, axis=0)
scores = np.max(class_prob, axis=0)
# filter by threshold
valid_idx = np.where(scores>=min_th)[0]
bboxes = bboxes[:, valid_idx]
classes = classes[valid_idx]
scores = scores[valid_idx]
bboxes = bboxes.transpose()
bboxes = bboxes*640
xmin = bboxes[:,0]-bboxes[:,2]//2
xmax = bboxes[:,0]+bboxes[:,2]//2
ymin = bboxes[:,1]-bboxes[:,3]//2
ymax = bboxes[:,1]+bboxes[:,3]//2
xmin = np.clip(xmin, 0, 640)
ymin = np.clip(ymin, 0, 640)
bboxes = np.vstack([ymin, xmin, ymax, xmax])
bboxes = bboxes.transpose()
bboxes = bboxes.astype(int)
bboxes, scores, classes = non_max_supression(bboxes, scores, classes, iou_th=0.5)
idx = np.argsort(scores)[::-1]
bboxes = bboxes[idx]
classes = classes[idx]
scores = scores[idx]
return bboxes, classes, scores
def plot_prediction(image_np, bboxes, classes, scores, label_map):
color=(255,0,0)
thickness=5
font_scale=3
for i, box in enumerate(bboxes):
box = bboxes[i, :]
ymin, xmin, ymax, xmax = box
image_np = cv2.rectangle(image_np, (xmin, ymin), (xmax, ymax), color=color, thickness=thickness)
text_x = xmin - 10 if xmin > 20 else xmin + 10
text_y = ymin - 10 if ymin > 20 else ymin + 10
display_str = label_map[str(classes[i])]
cv2.putText(
image_np,
display_str,
(text_x, text_y),
cv2.FONT_HERSHEY_SIMPLEX,
font_scale,
color,
thickness,
)
plt.imshow(image_np)
plt.show()
def predict_yolo_tflite(intenpreter, image_np):
input_tensor = np.expand_dims(image_np, axis=0)
input_tensor = tf.convert_to_tensor(input_tensor, dtype=tf.float32)
interpreter.set_tensor(input_details[0]['index'], input_tensor.numpy())
interpreter.invoke()
preds = interpreter.get_tensor(output_details[0]['index'])
return preds
if __name__ == "__main__":
min_th = 0.1
labels_json = "coco_labels.json"
with open(labels_json) as f:
label_map = json.load(f)
img_path = "test_images"
saved_tflite = "tflite_model.tflite"
# load model
interpreter = tf.lite.Interpreter(model_path=saved_tflite)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
print(input_details)
print(output_details)
images = glob.glob(os.path.join(img_path, "*"))
for img in images:
image_np = preprocess(img)
print(image_np.shape)
# image_np = np.array(Image.open(image_path))
preds = predict_yolo_tflite(interpreter, image_np)
bboxes, classes, scores = postprocess_prediction(preds)
plot_prediction(image_np, bboxes, classes, scores, label_map) |