File size: 40,793 Bytes
825bcd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "f49d031a",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from torch_geometric.data import Data\n",
"import torch_geometric.transforms as T\n",
"from torch_geometric.data import InMemoryDataset\n",
"from torch_geometric.loader import DataLoader\n",
"import numpy as np\n",
"import time"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "cd1e01d3",
"metadata": {},
"outputs": [],
"source": [
"path =\"Copy of andrea-dd-dataLte100.npy\"\n",
"# path=\"/content/drive/MyDrive/Barc Datasets/andrea-juslin-dataGt100.npy\"\n",
"data = np.load(path, allow_pickle=True)\n",
"data = data[None][0]\n",
"dataXorig = []\n",
"dataY = []\n",
"dataPe = []\n",
"for x, y, z in zip(data['x'], data['y'], data['z']):\n",
" if y > 3: continue # We only want 0 and 1 labels for this activity\n",
" dataXorig.append(x)\n",
" dataY.append(y)\n",
" dataPe.append(z['pe'])"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4f8c43ad",
"metadata": {},
"outputs": [],
"source": [
"featLen = 30 # we are restricting to first thirty nearest neighbours\n",
"dataAtoms = torch.tensor(np.array([x[0][:featLen+1] for x in dataXorig]), dtype=torch.float)\n",
"dataX = torch.tensor(np.array([x[1][:featLen+1] for x in dataXorig]).reshape(len(dataAtoms),featLen+1,1), dtype=torch.float)\n",
"# dataY = torch.nn.functional.one_hot(torch.tensor(dataY, dtype=torch.long),num_classes=4).float()\n",
"dataY=torch.tensor(dataY, dtype=torch.long)\n",
"#dataX = dataAtoms"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "70d2090f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(torch.Size([42699, 31, 4]),\n",
" torch.Size([42699, 31, 1]),\n",
" torch.Size([42699]),\n",
" torch.Size([42699, 31, 3]))"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataXAll = torch.concat((dataX, dataAtoms), axis=2)\n",
"dataXAll.shape, dataX.shape, dataY.shape, dataAtoms.shape"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "832769fa",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([0, 0, 0, ..., 1, 1, 1])"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataY"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0d430c0d",
"metadata": {},
"outputs": [],
"source": [
"posData = []\n",
"for dt, y in zip(dataAtoms, dataY):\n",
" data = Data(x= dt, pos=dt, y = y)#, pre_transform=T.RadiusGraph(r=4.0), transform=T.Distance())\n",
" data.validate(raise_on_error=True)\n",
" posData.append(data)\n",
"distData = []\n",
"for dt, x, y in zip(dataAtoms, dataX, dataY):\n",
" data = Data(x= x, pos=dt, y = y)#, pre_transform=T.RadiusGraph(r=4.0), transform=T.Distance())\n",
" data.validate(raise_on_error=True)\n",
" distData.append(data)\n",
"allData = posData"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "ba1c05ab",
"metadata": {},
"outputs": [],
"source": [
"dir(data)\n",
"data.edge_weight"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "47afb2ee",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from torch_geometric.data import Data\n",
"import torch_geometric.transforms as T\n",
"from torch_geometric.data import InMemoryDataset\n",
"from torch_geometric.loader import DataLoader\n",
"import numpy as np\n",
"import time"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "80b6c9ac",
"metadata": {},
"outputs": [],
"source": [
"device=\"cuda\" if torch.cuda.is_available() else \"cpu\""
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "06225cca",
"metadata": {},
"outputs": [],
"source": [
"class MyDataset(InMemoryDataset):\n",
" def __init__(self, root, data_list, transform=None, pre_transform=None, pre_filter=None):\n",
" self.data_list = data_list\n",
" super().__init__(root, transform, pre_transform, pre_filter)\n",
" self.data, self.slices = torch.load(self.processed_paths[0])\n",
"\n",
" @property\n",
" def raw_file_names(self):\n",
" return ['mydata']\n",
"\n",
" @property\n",
" def processed_file_names(self):\n",
" return ['data.pt']\n",
"\n",
" def download(self):\n",
" # Download to `self.raw_dir`.\n",
" pass\n",
"\n",
" def process(self):\n",
" # Read data into huge `Data` list.\n",
" data_list = self.data_list\n",
"\n",
" if self.pre_filter is not None:\n",
" data_list = [data for data in data_list if self.pre_filter(data)]\n",
"\n",
" if self.pre_transform is not None:\n",
" data_list = [self.pre_transform(data) for data in data_list]\n",
"\n",
" data, slices = self.collate(data_list)\n",
" torch.save((data, slices), self.processed_paths[0])"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "91654650",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Processing...\n",
"Done!\n",
"C:\\Users\\SrinadhVura\\AppData\\Local\\Temp\\ipykernel_18728\\1359331624.py:5: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
" self.data, self.slices = torch.load(self.processed_paths[0])\n"
]
}
],
"source": [
"# !rm -rf ./data/processed/\n",
"import shutil\n",
"shutil.rmtree('./data/processed/', ignore_errors=True)\n",
"dataset = MyDataset(\"./data\",allData, pre_transform=T.Compose([T.RadiusGraph(r=2.0), T.Distance()]))\n",
"#dataset = MyDataset(\"./data\",allData, pre_transform=T.Compose([T.RadiusGraph(r=2.0), T.Distance()]))"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "3edad4e2",
"metadata": {},
"outputs": [],
"source": [
"from torch_geometric.nn import GATv2Conv\n",
"import torch.nn.functional as F\n",
"from torch_geometric.nn.glob import global_mean_pool\n",
"class GATv2(torch.nn.Module):\n",
" def __init__(self,dim_h,heads=4):\n",
" super().__init__()\n",
" torch.manual_seed(55)\n",
" edge_dim = dataset[0].edge_attr.shape[1]\n",
" self.gat1=GATv2Conv(dataset.num_node_features,dim_h,heads=heads,concat=True,edge_dim=edge_dim)\n",
" self.gat2=GATv2Conv(dim_h*heads,dim_h,heads=heads,concat=True,edge_dim=edge_dim)\n",
" self.lin=torch.nn.Linear(dim_h*heads,dataset.num_classes)\n",
" def forward(self,data):\n",
" x,edge_index,edge_attr,batch=data.x,data.edge_index,data.edge_attr,data.batch\n",
" x=self.gat1(x,edge_index,edge_attr)\n",
" x=F.elu(x)\n",
" x=self.gat2(x,edge_index,edge_attr)\n",
" x=F.elu(x)\n",
" x=global_mean_pool(x,batch)\n",
" x=F.dropout(x,0.3,training=self.training)\n",
" x=self.lin(x)\n",
" return x\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "58bb1ac9",
"metadata": {},
"outputs": [],
"source": [
"dataset = dataset.shuffle()\n",
"train_size = int(0.8 * len(dataset))\n",
"test_size = len(dataset) - train_size\n",
"train_data,test_data=dataset[:train_size],dataset[train_size:]\n",
"train_loader = DataLoader(train_data, batch_size=32, shuffle=True)\n",
"test_loader = DataLoader(test_data, batch_size=32, shuffle=False)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "2d6479c6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 001, Train Acc: 0.4957, Test Acc: 0.4900, Time: 25.8774 seconds\n",
"Epoch: 002, Train Acc: 0.6084, Test Acc: 0.6093, Time: 24.4807 seconds\n",
"Epoch: 003, Train Acc: 0.6459, Test Acc: 0.6454, Time: 24.6017 seconds\n",
"Epoch: 004, Train Acc: 0.6813, Test Acc: 0.6749, Time: 24.6508 seconds\n",
"Epoch: 005, Train Acc: 0.6887, Test Acc: 0.6850, Time: 24.8438 seconds\n",
"Epoch: 006, Train Acc: 0.6733, Test Acc: 0.6679, Time: 24.9810 seconds\n",
"Epoch: 007, Train Acc: 0.7105, Test Acc: 0.7028, Time: 25.4978 seconds\n",
"Epoch: 008, Train Acc: 0.7156, Test Acc: 0.7070, Time: 26.5686 seconds\n",
"Epoch: 009, Train Acc: 0.7192, Test Acc: 0.7057, Time: 25.5068 seconds\n",
"Epoch: 010, Train Acc: 0.7452, Test Acc: 0.7364, Time: 24.8775 seconds\n",
"Epoch: 011, Train Acc: 0.7473, Test Acc: 0.7358, Time: 24.8751 seconds\n",
"Epoch: 012, Train Acc: 0.7590, Test Acc: 0.7523, Time: 24.8378 seconds\n",
"Epoch: 013, Train Acc: 0.7534, Test Acc: 0.7441, Time: 24.8861 seconds\n",
"Epoch: 014, Train Acc: 0.7390, Test Acc: 0.7297, Time: 24.8664 seconds\n",
"Epoch: 015, Train Acc: 0.7719, Test Acc: 0.7642, Time: 24.7913 seconds\n",
"Epoch: 016, Train Acc: 0.7905, Test Acc: 0.7778, Time: 24.7148 seconds\n",
"Epoch: 017, Train Acc: 0.7631, Test Acc: 0.7585, Time: 24.8516 seconds\n",
"Epoch: 018, Train Acc: 0.7694, Test Acc: 0.7562, Time: 24.8459 seconds\n",
"Epoch: 019, Train Acc: 0.7915, Test Acc: 0.7809, Time: 25.7345 seconds\n",
"Epoch: 020, Train Acc: 0.7866, Test Acc: 0.7721, Time: 25.8023 seconds\n",
"Epoch: 021, Train Acc: 0.7834, Test Acc: 0.7715, Time: 26.0532 seconds\n",
"Epoch: 022, Train Acc: 0.7917, Test Acc: 0.7799, Time: 25.6241 seconds\n",
"Epoch: 023, Train Acc: 0.7874, Test Acc: 0.7795, Time: 25.5449 seconds\n",
"Epoch: 024, Train Acc: 0.8107, Test Acc: 0.7905, Time: 25.6376 seconds\n",
"Epoch: 025, Train Acc: 0.8006, Test Acc: 0.7877, Time: 25.4805 seconds\n",
"Epoch: 026, Train Acc: 0.8106, Test Acc: 0.7940, Time: 25.5074 seconds\n",
"Epoch: 027, Train Acc: 0.8090, Test Acc: 0.7974, Time: 25.8159 seconds\n",
"Epoch: 028, Train Acc: 0.7693, Test Acc: 0.7540, Time: 25.4768 seconds\n",
"Epoch: 029, Train Acc: 0.8152, Test Acc: 0.7982, Time: 25.3734 seconds\n",
"Epoch: 030, Train Acc: 0.8120, Test Acc: 0.7951, Time: 25.2074 seconds\n",
"Epoch: 031, Train Acc: 0.7903, Test Acc: 0.7717, Time: 25.2981 seconds\n",
"Epoch: 032, Train Acc: 0.7993, Test Acc: 0.7815, Time: 25.2922 seconds\n",
"Epoch: 033, Train Acc: 0.8092, Test Acc: 0.7857, Time: 25.2716 seconds\n",
"Epoch: 034, Train Acc: 0.8086, Test Acc: 0.7821, Time: 25.1796 seconds\n",
"Epoch: 035, Train Acc: 0.8158, Test Acc: 0.7929, Time: 25.2028 seconds\n",
"Epoch: 036, Train Acc: 0.8133, Test Acc: 0.7926, Time: 25.1788 seconds\n",
"Epoch: 037, Train Acc: 0.8030, Test Acc: 0.7852, Time: 25.1870 seconds\n",
"Epoch: 038, Train Acc: 0.8300, Test Acc: 0.8062, Time: 25.2557 seconds\n",
"Epoch: 039, Train Acc: 0.8002, Test Acc: 0.7762, Time: 25.2280 seconds\n",
"Epoch: 040, Train Acc: 0.8199, Test Acc: 0.7973, Time: 25.2002 seconds\n",
"Epoch: 041, Train Acc: 0.8112, Test Acc: 0.7879, Time: 25.1714 seconds\n",
"Epoch: 042, Train Acc: 0.8256, Test Acc: 0.8116, Time: 25.2478 seconds\n",
"Epoch: 043, Train Acc: 0.8447, Test Acc: 0.8215, Time: 25.3352 seconds\n",
"Epoch: 044, Train Acc: 0.8315, Test Acc: 0.8033, Time: 26.1272 seconds\n",
"Epoch: 045, Train Acc: 0.8426, Test Acc: 0.8194, Time: 25.4368 seconds\n",
"Epoch: 046, Train Acc: 0.8236, Test Acc: 0.7975, Time: 25.2172 seconds\n",
"Epoch: 047, Train Acc: 0.8340, Test Acc: 0.8093, Time: 25.4511 seconds\n",
"Epoch: 048, Train Acc: 0.8483, Test Acc: 0.8281, Time: 25.2266 seconds\n",
"Epoch: 049, Train Acc: 0.8475, Test Acc: 0.8275, Time: 25.1697 seconds\n",
"TOtal time taken:1238.5092 seconds\n"
]
}
],
"source": [
"\n",
"model = GATv2(128).to(device)\n",
"optimizer = torch.optim.Adam(model.parameters(), lr=0.001)\n",
"criterion = torch.nn.CrossEntropyLoss()\n",
"\n",
"def train():\n",
" model.train()\n",
"\n",
" for data in train_loader: # Iterate in batches over the training dataset.\n",
" out = model(data.to(device)) # Perform a single forward pass.\n",
" loss = criterion(out, data.y) # Compute the loss.\n",
" loss.backward() # Derive gradients.\n",
" optimizer.step() # Update parameters based on gradients.\n",
" optimizer.zero_grad() # Clear gradients.\n",
"\n",
"def test(loader):\n",
" model.eval()\n",
"\n",
" correct = 0\n",
" for data in loader: # Iterate in batches over the training/test dataset.\n",
" out = model(data.to(device))\n",
" pred = out.argmax(dim=1) # Use the class with highest probability.\n",
" correct += int((pred == data.y).sum()) # Check against ground-truth labels.\n",
" return correct / len(loader.dataset) # Derive ratio of correct predictions.\n",
"\n",
"\n",
"acc,t=[],[]\n",
"a=time.time()\n",
"for epoch in range(1, 50):\n",
" x=time.time()\n",
" train()\n",
" train_acc = test(train_loader)\n",
" test_acc = test(test_loader)\n",
" y=time.time()\n",
" acc.append(test_acc)\n",
" t.append(y-x)\n",
" print(f'Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}, Time: {(y-x):.4f} seconds')\n",
"b=time.time()\n",
"print(f'TOtal time taken:{(b-a):.4f} seconds')"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "2d9dbd7c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 001, Train Acc: 0.8265, Test Acc: 0.7945, Time: 24.9625 seconds\n",
"Epoch: 002, Train Acc: 0.8503, Test Acc: 0.8258, Time: 24.9976 seconds\n",
"Epoch: 003, Train Acc: 0.8506, Test Acc: 0.8281, Time: 25.1676 seconds\n",
"Epoch: 004, Train Acc: 0.8372, Test Acc: 0.8184, Time: 25.4236 seconds\n",
"Epoch: 005, Train Acc: 0.8557, Test Acc: 0.8248, Time: 27.4433 seconds\n",
"Epoch: 006, Train Acc: 0.8488, Test Acc: 0.8201, Time: 26.2164 seconds\n",
"Epoch: 007, Train Acc: 0.8493, Test Acc: 0.8219, Time: 28.7789 seconds\n",
"Epoch: 008, Train Acc: 0.8429, Test Acc: 0.8165, Time: 25.7886 seconds\n",
"Epoch: 009, Train Acc: 0.8613, Test Acc: 0.8276, Time: 26.8074 seconds\n",
"Epoch: 010, Train Acc: 0.8528, Test Acc: 0.8196, Time: 26.9662 seconds\n",
"Epoch: 011, Train Acc: 0.8372, Test Acc: 0.8053, Time: 25.6793 seconds\n",
"Epoch: 012, Train Acc: 0.8352, Test Acc: 0.8151, Time: 25.4075 seconds\n",
"Epoch: 013, Train Acc: 0.8603, Test Acc: 0.8337, Time: 25.2606 seconds\n",
"Epoch: 014, Train Acc: 0.8521, Test Acc: 0.8254, Time: 25.2944 seconds\n",
"Epoch: 015, Train Acc: 0.8498, Test Acc: 0.8143, Time: 25.2541 seconds\n",
"Epoch: 016, Train Acc: 0.8547, Test Acc: 0.8205, Time: 25.2576 seconds\n",
"Epoch: 017, Train Acc: 0.8482, Test Acc: 0.8220, Time: 25.1988 seconds\n",
"Epoch: 018, Train Acc: 0.8525, Test Acc: 0.8296, Time: 25.2256 seconds\n",
"Epoch: 019, Train Acc: 0.8595, Test Acc: 0.8259, Time: 25.4156 seconds\n",
"Epoch: 020, Train Acc: 0.8589, Test Acc: 0.8261, Time: 25.2268 seconds\n",
"Epoch: 021, Train Acc: 0.8658, Test Acc: 0.8304, Time: 25.4441 seconds\n",
"Epoch: 022, Train Acc: 0.8352, Test Acc: 0.8070, Time: 25.5956 seconds\n",
"Epoch: 023, Train Acc: 0.8724, Test Acc: 0.8299, Time: 25.4439 seconds\n",
"Epoch: 024, Train Acc: 0.8242, Test Acc: 0.7918, Time: 25.2510 seconds\n",
"Epoch: 025, Train Acc: 0.8627, Test Acc: 0.8307, Time: 26.1188 seconds\n",
"Epoch: 026, Train Acc: 0.8717, Test Acc: 0.8348, Time: 26.0500 seconds\n",
"Epoch: 027, Train Acc: 0.8544, Test Acc: 0.8184, Time: 25.5288 seconds\n",
"Epoch: 028, Train Acc: 0.7814, Test Acc: 0.7487, Time: 25.7745 seconds\n",
"Epoch: 029, Train Acc: 0.8569, Test Acc: 0.8292, Time: 25.3209 seconds\n",
"Epoch: 030, Train Acc: 0.8623, Test Acc: 0.8292, Time: 25.2030 seconds\n",
"Epoch: 031, Train Acc: 0.8640, Test Acc: 0.8287, Time: 25.9134 seconds\n",
"Epoch: 032, Train Acc: 0.8660, Test Acc: 0.8343, Time: 25.8696 seconds\n",
"Epoch: 033, Train Acc: 0.8541, Test Acc: 0.8167, Time: 25.1739 seconds\n",
"Epoch: 034, Train Acc: 0.8516, Test Acc: 0.8204, Time: 25.2224 seconds\n",
"Epoch: 035, Train Acc: 0.8651, Test Acc: 0.8274, Time: 25.4136 seconds\n",
"Epoch: 036, Train Acc: 0.8691, Test Acc: 0.8329, Time: 25.2840 seconds\n",
"Epoch: 037, Train Acc: 0.8794, Test Acc: 0.8351, Time: 25.4689 seconds\n",
"Epoch: 038, Train Acc: 0.8390, Test Acc: 0.8005, Time: 25.4441 seconds\n",
"Epoch: 039, Train Acc: 0.8515, Test Acc: 0.8180, Time: 25.4249 seconds\n",
"Epoch: 040, Train Acc: 0.8535, Test Acc: 0.8221, Time: 25.4681 seconds\n",
"Epoch: 041, Train Acc: 0.8727, Test Acc: 0.8391, Time: 25.1276 seconds\n",
"Epoch: 042, Train Acc: 0.8796, Test Acc: 0.8400, Time: 24.9614 seconds\n",
"Epoch: 043, Train Acc: 0.8708, Test Acc: 0.8330, Time: 25.3893 seconds\n",
"Epoch: 044, Train Acc: 0.8717, Test Acc: 0.8348, Time: 25.6369 seconds\n",
"Epoch: 045, Train Acc: 0.8654, Test Acc: 0.8273, Time: 25.1120 seconds\n",
"Epoch: 046, Train Acc: 0.8614, Test Acc: 0.8251, Time: 25.0642 seconds\n",
"Epoch: 047, Train Acc: 0.8609, Test Acc: 0.8207, Time: 25.0014 seconds\n",
"Epoch: 048, Train Acc: 0.8761, Test Acc: 0.8411, Time: 25.0245 seconds\n",
"Epoch: 049, Train Acc: 0.8633, Test Acc: 0.8239, Time: 25.0614 seconds\n",
"TOtal time taken:2581.8546 seconds\n"
]
}
],
"source": [
"for epoch in range(1, 50):\n",
" x=time.time()\n",
" train()\n",
" train_acc = test(train_loader)\n",
" test_acc = test(test_loader)\n",
" y=time.time()\n",
" acc.append(test_acc)\n",
" t.append(y-x)\n",
" print(f'Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}, Time: {(y-x):.4f} seconds')\n",
"b=time.time()\n",
"print(f'TOtal time taken:{(b-a):.4f} seconds')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "d7c43502",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 001, Train Acc: 0.8673, Test Acc: 0.8311, Time: 25.3796 seconds\n",
"Epoch: 002, Train Acc: 0.8462, Test Acc: 0.8125, Time: 25.1563 seconds\n",
"Epoch: 003, Train Acc: 0.8498, Test Acc: 0.8034, Time: 25.2885 seconds\n",
"Epoch: 004, Train Acc: 0.8368, Test Acc: 0.8027, Time: 25.2527 seconds\n",
"Epoch: 005, Train Acc: 0.8805, Test Acc: 0.8356, Time: 26.5682 seconds\n",
"Epoch: 006, Train Acc: 0.8526, Test Acc: 0.8156, Time: 25.8687 seconds\n",
"Epoch: 007, Train Acc: 0.8837, Test Acc: 0.8427, Time: 25.6244 seconds\n",
"Epoch: 008, Train Acc: 0.8823, Test Acc: 0.8358, Time: 25.2722 seconds\n",
"Epoch: 009, Train Acc: 0.8740, Test Acc: 0.8337, Time: 25.2649 seconds\n",
"Epoch: 010, Train Acc: 0.8775, Test Acc: 0.8349, Time: 25.5523 seconds\n",
"Epoch: 011, Train Acc: 0.8671, Test Acc: 0.8299, Time: 25.1311 seconds\n",
"Epoch: 012, Train Acc: 0.8681, Test Acc: 0.8315, Time: 25.1274 seconds\n",
"Epoch: 013, Train Acc: 0.8867, Test Acc: 0.8430, Time: 25.1428 seconds\n",
"Epoch: 014, Train Acc: 0.8808, Test Acc: 0.8370, Time: 25.3863 seconds\n",
"Epoch: 015, Train Acc: 0.8705, Test Acc: 0.8361, Time: 25.3820 seconds\n",
"Epoch: 016, Train Acc: 0.8663, Test Acc: 0.8262, Time: 25.3648 seconds\n",
"Epoch: 017, Train Acc: 0.8764, Test Acc: 0.8315, Time: 25.1957 seconds\n",
"Epoch: 018, Train Acc: 0.8839, Test Acc: 0.8341, Time: 25.1296 seconds\n",
"Epoch: 019, Train Acc: 0.8744, Test Acc: 0.8259, Time: 25.1842 seconds\n",
"Epoch: 020, Train Acc: 0.8728, Test Acc: 0.8272, Time: 25.1960 seconds\n",
"Epoch: 021, Train Acc: 0.8814, Test Acc: 0.8411, Time: 25.2335 seconds\n",
"Epoch: 022, Train Acc: 0.8612, Test Acc: 0.8265, Time: 25.2171 seconds\n",
"Epoch: 023, Train Acc: 0.8821, Test Acc: 0.8402, Time: 25.2572 seconds\n",
"Epoch: 024, Train Acc: 0.8830, Test Acc: 0.8370, Time: 26.0306 seconds\n",
"Epoch: 025, Train Acc: 0.8693, Test Acc: 0.8261, Time: 25.1953 seconds\n",
"Epoch: 026, Train Acc: 0.8698, Test Acc: 0.8288, Time: 25.1328 seconds\n",
"Epoch: 027, Train Acc: 0.8853, Test Acc: 0.8447, Time: 25.1489 seconds\n",
"Epoch: 028, Train Acc: 0.8785, Test Acc: 0.8285, Time: 25.2630 seconds\n",
"Epoch: 029, Train Acc: 0.8882, Test Acc: 0.8385, Time: 25.1945 seconds\n",
"Epoch: 030, Train Acc: 0.8726, Test Acc: 0.8288, Time: 25.1916 seconds\n",
"Epoch: 031, Train Acc: 0.8895, Test Acc: 0.8386, Time: 25.2485 seconds\n",
"Epoch: 032, Train Acc: 0.8636, Test Acc: 0.8295, Time: 25.1767 seconds\n",
"Epoch: 033, Train Acc: 0.8746, Test Acc: 0.8299, Time: 25.2032 seconds\n",
"Epoch: 034, Train Acc: 0.8880, Test Acc: 0.8383, Time: 25.5541 seconds\n",
"Epoch: 035, Train Acc: 0.8822, Test Acc: 0.8385, Time: 25.2495 seconds\n",
"Epoch: 036, Train Acc: 0.8909, Test Acc: 0.8467, Time: 25.4243 seconds\n",
"Epoch: 037, Train Acc: 0.8839, Test Acc: 0.8351, Time: 25.5948 seconds\n",
"Epoch: 038, Train Acc: 0.8821, Test Acc: 0.8341, Time: 25.2591 seconds\n",
"Epoch: 039, Train Acc: 0.8889, Test Acc: 0.8354, Time: 25.2509 seconds\n",
"Epoch: 040, Train Acc: 0.8842, Test Acc: 0.8446, Time: 25.2162 seconds\n",
"Epoch: 041, Train Acc: 0.8636, Test Acc: 0.8126, Time: 25.2191 seconds\n",
"Epoch: 042, Train Acc: 0.8817, Test Acc: 0.8363, Time: 25.2106 seconds\n",
"Epoch: 043, Train Acc: 0.8897, Test Acc: 0.8368, Time: 25.2143 seconds\n",
"Epoch: 044, Train Acc: 0.8777, Test Acc: 0.8316, Time: 25.1635 seconds\n",
"Epoch: 045, Train Acc: 0.8879, Test Acc: 0.8396, Time: 25.2399 seconds\n",
"Epoch: 046, Train Acc: 0.8850, Test Acc: 0.8309, Time: 25.1394 seconds\n",
"Epoch: 047, Train Acc: 0.8801, Test Acc: 0.8281, Time: 25.3154 seconds\n",
"Epoch: 048, Train Acc: 0.8905, Test Acc: 0.8363, Time: 25.1571 seconds\n",
"Epoch: 049, Train Acc: 0.8916, Test Acc: 0.8450, Time: 25.1891 seconds\n",
"TOtal time taken:4324.3672 seconds\n"
]
}
],
"source": [
"for epoch in range(1, 50):\n",
" x=time.time()\n",
" train()\n",
" train_acc = test(train_loader)\n",
" test_acc = test(test_loader)\n",
" y=time.time()\n",
" acc.append(test_acc)\n",
" t.append(y-x)\n",
" print(f'Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}, Time: {(y-x):.4f} seconds')\n",
"b=time.time()\n",
"print(f'TOtal time taken:{(b-a):.4f} seconds')"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "ccdc2139",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"from torch_geometric.nn import TransformerConv, global_mean_pool\n",
"\n",
"class GraphTransformerNet(nn.Module):\n",
" def __init__(self, in_channels, hidden_channels, out_channels, heads=4, num_layers=3, dropout=0.2):\n",
" super().__init__()\n",
" self.convs = nn.ModuleList()\n",
" self.convs.append(TransformerConv(in_channels, hidden_channels, heads=heads, dropout=dropout))\n",
" for _ in range(num_layers - 2):\n",
" self.convs.append(TransformerConv(hidden_channels * heads, hidden_channels, heads=heads, dropout=dropout))\n",
" self.convs.append(TransformerConv(hidden_channels * heads, hidden_channels, heads=1, dropout=dropout))\n",
" self.lin = nn.Linear(hidden_channels, out_channels)\n",
" self.dropout = dropout\n",
"\n",
" def forward(self, data):\n",
" x, edge_index, batch = data.x, data.edge_index, data.batch\n",
" for conv in self.convs:\n",
" x = conv(x, edge_index)\n",
" x = F.relu(x)\n",
" x = F.dropout(x, p=self.dropout, training=self.training)\n",
" x = global_mean_pool(x, batch)\n",
" x = self.lin(x)\n",
" return x"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "66fc81fa",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 001, Train Acc: 0.4981, Test Acc: 0.5008, Time: 21.0400 seconds\n",
"Epoch: 002, Train Acc: 0.6214, Test Acc: 0.6283, Time: 21.0401 seconds\n",
"Epoch: 003, Train Acc: 0.6922, Test Acc: 0.6972, Time: 21.3110 seconds\n",
"Epoch: 004, Train Acc: 0.6340, Test Acc: 0.6347, Time: 21.4084 seconds\n",
"Epoch: 005, Train Acc: 0.7140, Test Acc: 0.7116, Time: 21.5427 seconds\n",
"Epoch: 006, Train Acc: 0.7017, Test Acc: 0.6966, Time: 21.5673 seconds\n",
"Epoch: 007, Train Acc: 0.7422, Test Acc: 0.7420, Time: 21.4987 seconds\n",
"Epoch: 008, Train Acc: 0.7296, Test Acc: 0.7319, Time: 21.3965 seconds\n",
"Epoch: 009, Train Acc: 0.7007, Test Acc: 0.7085, Time: 21.3689 seconds\n",
"Epoch: 010, Train Acc: 0.7653, Test Acc: 0.7651, Time: 21.3604 seconds\n",
"Epoch: 011, Train Acc: 0.7580, Test Acc: 0.7622, Time: 21.3570 seconds\n",
"Epoch: 012, Train Acc: 0.7195, Test Acc: 0.7173, Time: 21.3565 seconds\n",
"Epoch: 013, Train Acc: 0.7629, Test Acc: 0.7655, Time: 21.4036 seconds\n",
"Epoch: 014, Train Acc: 0.7690, Test Acc: 0.7669, Time: 21.3677 seconds\n",
"Epoch: 015, Train Acc: 0.7581, Test Acc: 0.7540, Time: 21.4620 seconds\n",
"Epoch: 016, Train Acc: 0.7948, Test Acc: 0.7952, Time: 21.4100 seconds\n",
"Epoch: 017, Train Acc: 0.7715, Test Acc: 0.7711, Time: 21.5848 seconds\n",
"Epoch: 018, Train Acc: 0.7848, Test Acc: 0.7813, Time: 21.4893 seconds\n",
"Epoch: 019, Train Acc: 0.8042, Test Acc: 0.7989, Time: 21.5196 seconds\n",
"Epoch: 020, Train Acc: 0.7848, Test Acc: 0.7852, Time: 21.4080 seconds\n",
"Epoch: 021, Train Acc: 0.7854, Test Acc: 0.7845, Time: 21.3282 seconds\n",
"Epoch: 022, Train Acc: 0.7995, Test Acc: 0.7979, Time: 21.3296 seconds\n",
"Epoch: 023, Train Acc: 0.8046, Test Acc: 0.8013, Time: 21.2942 seconds\n",
"Epoch: 024, Train Acc: 0.7934, Test Acc: 0.7945, Time: 21.2278 seconds\n",
"Epoch: 025, Train Acc: 0.7872, Test Acc: 0.7893, Time: 21.3140 seconds\n",
"Epoch: 026, Train Acc: 0.8161, Test Acc: 0.8152, Time: 21.2853 seconds\n",
"Epoch: 027, Train Acc: 0.8057, Test Acc: 0.8043, Time: 21.2965 seconds\n",
"Epoch: 028, Train Acc: 0.8098, Test Acc: 0.8067, Time: 21.2929 seconds\n",
"Epoch: 029, Train Acc: 0.8096, Test Acc: 0.8034, Time: 21.3359 seconds\n",
"TOtal time taken:619.6132 seconds\n"
]
}
],
"source": [
"in_channels = dataset.num_node_features\n",
"hidden_channels = 128\n",
"out_channels = dataset.num_classes\n",
"model = GraphTransformerNet(in_channels, hidden_channels, out_channels).to(device)\n",
"optimizer = torch.optim.Adam(model.parameters(), lr=0.001)\n",
"criterion = torch.nn.CrossEntropyLoss()\n",
"\n",
"def train():\n",
" model.train()\n",
"\n",
" for data in train_loader: # Iterate in batches over the training dataset.\n",
" out = model(data.to(device)) # Perform a single forward pass.\n",
" loss = criterion(out, data.y) # Compute the loss.\n",
" loss.backward() # Derive gradients.\n",
" optimizer.step() # Update parameters based on gradients.\n",
" optimizer.zero_grad() # Clear gradients.\n",
"\n",
"def test(loader):\n",
" model.eval()\n",
"\n",
" correct = 0\n",
" for data in loader: # Iterate in batches over the training/test dataset.\n",
" out = model(data.to(device))\n",
" pred = out.argmax(dim=1) # Use the class with highest probability.\n",
" correct += int((pred == data.y).sum()) # Check against ground-truth labels.\n",
" return correct / len(loader.dataset) # Derive ratio of correct predictions.\n",
"\n",
"\n",
"acc,t=[],[]\n",
"a=time.time()\n",
"for epoch in range(1, 30):\n",
" x=time.time()\n",
" train()\n",
" train_acc = test(train_loader)\n",
" test_acc = test(test_loader)\n",
" y=time.time()\n",
" acc.append(test_acc)\n",
" t.append(y-x)\n",
" print(f'Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}, Time: {(y-x):.4f} seconds')\n",
"b=time.time()\n",
"print(f'TOtal time taken:{(b-a):.4f} seconds')"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "e160cdc1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 001, Train Acc: 0.7834, Test Acc: 0.7799, Time: 20.5345 seconds\n",
"Epoch: 002, Train Acc: 0.8031, Test Acc: 0.7999, Time: 20.3483 seconds\n",
"Epoch: 003, Train Acc: 0.8063, Test Acc: 0.8047, Time: 20.4774 seconds\n",
"Epoch: 004, Train Acc: 0.7843, Test Acc: 0.7820, Time: 20.6039 seconds\n",
"Epoch: 005, Train Acc: 0.8096, Test Acc: 0.8084, Time: 20.7035 seconds\n",
"Epoch: 006, Train Acc: 0.8012, Test Acc: 0.7979, Time: 20.8724 seconds\n",
"Epoch: 007, Train Acc: 0.8301, Test Acc: 0.8248, Time: 20.9738 seconds\n",
"Epoch: 008, Train Acc: 0.7965, Test Acc: 0.7953, Time: 21.0458 seconds\n",
"Epoch: 009, Train Acc: 0.8086, Test Acc: 0.8059, Time: 21.1957 seconds\n",
"Epoch: 010, Train Acc: 0.8270, Test Acc: 0.8240, Time: 21.0377 seconds\n",
"Epoch: 011, Train Acc: 0.8156, Test Acc: 0.8117, Time: 21.0017 seconds\n",
"Epoch: 012, Train Acc: 0.8316, Test Acc: 0.8289, Time: 21.0952 seconds\n",
"Epoch: 013, Train Acc: 0.7880, Test Acc: 0.7836, Time: 21.0399 seconds\n",
"Epoch: 014, Train Acc: 0.8383, Test Acc: 0.8301, Time: 21.0658 seconds\n",
"Epoch: 015, Train Acc: 0.8307, Test Acc: 0.8258, Time: 21.0292 seconds\n",
"Epoch: 016, Train Acc: 0.8166, Test Acc: 0.8103, Time: 21.0862 seconds\n",
"Epoch: 017, Train Acc: 0.8419, Test Acc: 0.8398, Time: 21.0714 seconds\n",
"Epoch: 018, Train Acc: 0.8011, Test Acc: 0.7987, Time: 21.1226 seconds\n",
"Epoch: 019, Train Acc: 0.8289, Test Acc: 0.8227, Time: 21.1413 seconds\n",
"Epoch: 020, Train Acc: 0.8518, Test Acc: 0.8485, Time: 21.1090 seconds\n",
"Epoch: 021, Train Acc: 0.8334, Test Acc: 0.8294, Time: 21.0528 seconds\n",
"Epoch: 022, Train Acc: 0.8120, Test Acc: 0.8129, Time: 21.0969 seconds\n",
"Epoch: 023, Train Acc: 0.7796, Test Acc: 0.7753, Time: 21.0279 seconds\n",
"Epoch: 024, Train Acc: 0.8334, Test Acc: 0.8309, Time: 21.0795 seconds\n",
"Epoch: 025, Train Acc: 0.8322, Test Acc: 0.8260, Time: 21.1273 seconds\n",
"Epoch: 026, Train Acc: 0.8368, Test Acc: 0.8294, Time: 21.1004 seconds\n",
"Epoch: 027, Train Acc: 0.8486, Test Acc: 0.8403, Time: 21.0755 seconds\n",
"Epoch: 028, Train Acc: 0.8426, Test Acc: 0.8352, Time: 21.1000 seconds\n",
"Epoch: 029, Train Acc: 0.8409, Test Acc: 0.8317, Time: 21.0839 seconds\n",
"Epoch: 030, Train Acc: 0.8315, Test Acc: 0.8276, Time: 21.0667 seconds\n",
"Epoch: 031, Train Acc: 0.8310, Test Acc: 0.8259, Time: 21.0606 seconds\n",
"Epoch: 032, Train Acc: 0.8423, Test Acc: 0.8378, Time: 21.0881 seconds\n",
"Epoch: 033, Train Acc: 0.8564, Test Acc: 0.8525, Time: 21.0627 seconds\n",
"Epoch: 034, Train Acc: 0.8418, Test Acc: 0.8372, Time: 21.2976 seconds\n",
"Epoch: 035, Train Acc: 0.8245, Test Acc: 0.8176, Time: 21.2908 seconds\n",
"Epoch: 036, Train Acc: 0.8377, Test Acc: 0.8315, Time: 21.3887 seconds\n",
"Epoch: 037, Train Acc: 0.8294, Test Acc: 0.8248, Time: 21.3492 seconds\n",
"Epoch: 038, Train Acc: 0.8311, Test Acc: 0.8249, Time: 21.3444 seconds\n",
"Epoch: 039, Train Acc: 0.8646, Test Acc: 0.8570, Time: 21.3087 seconds\n",
"Epoch: 040, Train Acc: 0.8524, Test Acc: 0.8457, Time: 21.3876 seconds\n",
"Epoch: 041, Train Acc: 0.8398, Test Acc: 0.8322, Time: 21.3600 seconds\n",
"Epoch: 042, Train Acc: 0.8227, Test Acc: 0.8204, Time: 21.3573 seconds\n",
"Epoch: 043, Train Acc: 0.8645, Test Acc: 0.8574, Time: 21.3399 seconds\n",
"Epoch: 044, Train Acc: 0.8458, Test Acc: 0.8381, Time: 21.3396 seconds\n",
"Epoch: 045, Train Acc: 0.8712, Test Acc: 0.8624, Time: 21.4001 seconds\n",
"Epoch: 046, Train Acc: 0.8596, Test Acc: 0.8474, Time: 21.3271 seconds\n",
"Epoch: 047, Train Acc: 0.8643, Test Acc: 0.8560, Time: 21.4970 seconds\n",
"Epoch: 048, Train Acc: 0.8583, Test Acc: 0.8511, Time: 21.3742 seconds\n",
"Epoch: 049, Train Acc: 0.8456, Test Acc: 0.8427, Time: 21.3583 seconds\n",
"TOtal time taken:3346.5106 seconds\n"
]
}
],
"source": [
"for epoch in range(1, 50):\n",
" x=time.time()\n",
" train()\n",
" train_acc = test(train_loader)\n",
" test_acc = test(test_loader)\n",
" y=time.time()\n",
" acc.append(test_acc)\n",
" t.append(y-x)\n",
" print(f'Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}, Time: {(y-x):.4f} seconds')\n",
"b=time.time()\n",
"print(f'TOtal time taken:{(b-a):.4f} seconds')"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "b5273211",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 001, Train Acc: 0.8294, Test Acc: 0.8244, Time: 21.6335 seconds\n",
"Epoch: 002, Train Acc: 0.8411, Test Acc: 0.8347, Time: 21.9815 seconds\n",
"Epoch: 003, Train Acc: 0.8580, Test Acc: 0.8525, Time: 22.3066 seconds\n",
"Epoch: 004, Train Acc: 0.8512, Test Acc: 0.8456, Time: 21.8491 seconds\n",
"Epoch: 005, Train Acc: 0.8688, Test Acc: 0.8576, Time: 21.3336 seconds\n",
"Epoch: 006, Train Acc: 0.8604, Test Acc: 0.8543, Time: 21.8262 seconds\n",
"Epoch: 007, Train Acc: 0.8311, Test Acc: 0.8282, Time: 21.4122 seconds\n",
"Epoch: 008, Train Acc: 0.8623, Test Acc: 0.8533, Time: 21.7136 seconds\n",
"Epoch: 009, Train Acc: 0.8545, Test Acc: 0.8516, Time: 21.7051 seconds\n",
"Epoch: 010, Train Acc: 0.8580, Test Acc: 0.8478, Time: 21.6664 seconds\n",
"Epoch: 011, Train Acc: 0.8400, Test Acc: 0.8350, Time: 22.2604 seconds\n",
"Epoch: 012, Train Acc: 0.8523, Test Acc: 0.8471, Time: 22.7480 seconds\n",
"Epoch: 013, Train Acc: 0.8662, Test Acc: 0.8597, Time: 21.5961 seconds\n",
"Epoch: 014, Train Acc: 0.8509, Test Acc: 0.8452, Time: 21.8072 seconds\n",
"Epoch: 015, Train Acc: 0.8710, Test Acc: 0.8648, Time: 22.6861 seconds\n",
"Epoch: 016, Train Acc: 0.8372, Test Acc: 0.8322, Time: 21.4229 seconds\n",
"Epoch: 017, Train Acc: 0.8435, Test Acc: 0.8354, Time: 21.4031 seconds\n",
"Epoch: 018, Train Acc: 0.8770, Test Acc: 0.8671, Time: 21.4051 seconds\n",
"Epoch: 019, Train Acc: 0.8349, Test Acc: 0.8281, Time: 21.3081 seconds\n",
"Epoch: 020, Train Acc: 0.8362, Test Acc: 0.8324, Time: 21.2875 seconds\n",
"Epoch: 021, Train Acc: 0.8589, Test Acc: 0.8511, Time: 21.6692 seconds\n",
"Epoch: 022, Train Acc: 0.8708, Test Acc: 0.8646, Time: 21.2015 seconds\n",
"Epoch: 023, Train Acc: 0.8649, Test Acc: 0.8575, Time: 21.3023 seconds\n",
"Epoch: 024, Train Acc: 0.8543, Test Acc: 0.8530, Time: 21.2712 seconds\n",
"Epoch: 025, Train Acc: 0.8542, Test Acc: 0.8491, Time: 21.0625 seconds\n",
"Epoch: 026, Train Acc: 0.8427, Test Acc: 0.8381, Time: 21.1436 seconds\n",
"Epoch: 027, Train Acc: 0.8594, Test Acc: 0.8523, Time: 21.2964 seconds\n",
"Epoch: 028, Train Acc: 0.8624, Test Acc: 0.8580, Time: 21.2751 seconds\n",
"Epoch: 029, Train Acc: 0.8614, Test Acc: 0.8568, Time: 21.3692 seconds\n",
"Epoch: 030, Train Acc: 0.8630, Test Acc: 0.8525, Time: 21.1976 seconds\n",
"Epoch: 031, Train Acc: 0.8545, Test Acc: 0.8501, Time: 21.0957 seconds\n",
"Epoch: 032, Train Acc: 0.8444, Test Acc: 0.8355, Time: 21.1121 seconds\n",
"Epoch: 033, Train Acc: 0.8571, Test Acc: 0.8521, Time: 21.9765 seconds\n",
"Epoch: 034, Train Acc: 0.8809, Test Acc: 0.8700, Time: 21.5728 seconds\n",
"Epoch: 035, Train Acc: 0.8607, Test Acc: 0.8502, Time: 21.7194 seconds\n",
"Epoch: 036, Train Acc: 0.8479, Test Acc: 0.8417, Time: 21.4821 seconds\n",
"Epoch: 037, Train Acc: 0.8483, Test Acc: 0.8434, Time: 21.6710 seconds\n",
"Epoch: 038, Train Acc: 0.8621, Test Acc: 0.8519, Time: 21.8791 seconds\n",
"Epoch: 039, Train Acc: 0.8502, Test Acc: 0.8463, Time: 21.6123 seconds\n",
"Epoch: 040, Train Acc: 0.8522, Test Acc: 0.8479, Time: 21.8715 seconds\n",
"Epoch: 041, Train Acc: 0.8525, Test Acc: 0.8450, Time: 21.4852 seconds\n",
"Epoch: 042, Train Acc: 0.8576, Test Acc: 0.8492, Time: 21.4420 seconds\n",
"Epoch: 043, Train Acc: 0.8381, Test Acc: 0.8347, Time: 21.7751 seconds\n",
"Epoch: 044, Train Acc: 0.8674, Test Acc: 0.8605, Time: 21.4741 seconds\n",
"Epoch: 045, Train Acc: 0.8588, Test Acc: 0.8540, Time: 21.4491 seconds\n",
"Epoch: 046, Train Acc: 0.8491, Test Acc: 0.8400, Time: 21.4769 seconds\n",
"Epoch: 047, Train Acc: 0.8439, Test Acc: 0.8376, Time: 21.4490 seconds\n",
"Epoch: 048, Train Acc: 0.8827, Test Acc: 0.8708, Time: 21.4509 seconds\n",
"Epoch: 049, Train Acc: 0.8777, Test Acc: 0.8652, Time: 21.4486 seconds\n",
"TOtal time taken:5775.3160 seconds\n"
]
}
],
"source": [
"for epoch in range(1, 50):\n",
" x=time.time()\n",
" train()\n",
" train_acc = test(train_loader)\n",
" test_acc = test(test_loader)\n",
" y=time.time()\n",
" acc.append(test_acc)\n",
" t.append(y-x)\n",
" print(f'Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}, Time: {(y-x):.4f} seconds')\n",
"b=time.time()\n",
"print(f'TOtal time taken:{(b-a):.4f} seconds')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5052b422",
"metadata": {},
"outputs": [],
"source": [
"for epoch in range(1, 50):\n",
" x=time.time()\n",
" train()\n",
" train_acc = test(train_loader)\n",
" test_acc = test(test_loader)\n",
" y=time.time()\n",
" acc.append(test_acc)\n",
" t.append(y-x)\n",
" print(f'Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}, Time: {(y-x):.4f} seconds')\n",
"b=time.time()\n",
"print(f'TOtal time taken:{(b-a):.4f} seconds')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Project",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|