PixCell-pipeline-ControlNet / pixcell_controlnet.py
AlexGraikos's picture
Create pixcell_controlnet.py
62a25d2 verified
raw
history blame
7.78 kB
from dataclasses import dataclass
from diffusers.configuration_utils import ConfigMixin
from diffusers.models.modeling_utils import ModelMixin
import torch
import torch.nn as nn
from typing import Any, Dict, Optional, Tuple
from pixcell_transformer_2d import PixCellTransformer2DModel
from diffusers.models.controlnet import zero_module
from diffusers.models.embeddings import PatchEmbed
from diffusers.utils import BaseOutput, is_torch_version
@dataclass
class PixCellControlNetOutput(BaseOutput):
controlnet_block_samples: Tuple[torch.Tensor]
class PixCellControlNet(ModelMixin, ConfigMixin):
def __init__(
self,
base_transformer: PixCellTransformer2DModel,
n_blocks: int = None,
):
super().__init__()
self.n_blocks = n_blocks
# Base transformer
self.transformer = base_transformer
# Input patch embedding is frozen
# self.transformer.pos_embed.requires_grad = False
# Condition patch embedding
interpolation_scale = (
self.transformer.config.interpolation_scale
if self.transformer.config.interpolation_scale is not None
else max(self.transformer.config.sample_size // 64, 1)
)
self.cond_pos_embed = zero_module(PatchEmbed(
height=self.transformer.config.sample_size,
width=self.transformer.config.sample_size,
patch_size=self.transformer.config.patch_size,
in_channels=self.transformer.config.in_channels,
embed_dim=self.transformer.inner_dim,
interpolation_scale=interpolation_scale,
))
# Do not use all transformer blocks for controlnet
if self.n_blocks is not None:
self.transformer.transformer_blocks = self.transformer.transformer_blocks[:self.n_blocks]
# ControlNet layers
self.controlnet_blocks = nn.ModuleList([])
for i in range(len(self.transformer.transformer_blocks)):
controlnet_block = nn.Linear(self.transformer.inner_dim, self.transformer.inner_dim)
controlnet_block = zero_module(controlnet_block)
self.controlnet_blocks.append(controlnet_block)
if self.n_blocks is not None:
if i+1 == self.n_blocks:
break
def forward(
self,
hidden_states: torch.Tensor,
conditioning: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
conditioning_scale: float = 1.0,
added_cond_kwargs: Dict[str, torch.Tensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
if self.transformer.use_additional_conditions and added_cond_kwargs is None:
raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.")
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None and attention_mask.ndim == 2:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# 1. Input
batch_size = hidden_states.shape[0]
height, width = (
hidden_states.shape[-2] // self.transformer.config.patch_size,
hidden_states.shape[-1] // self.transformer.config.patch_size,
)
hidden_states = self.transformer.pos_embed(hidden_states)
# Conditioning
hidden_states = hidden_states + self.cond_pos_embed(conditioning)
timestep, embedded_timestep = self.transformer.adaln_single(
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
)
if self.transformer.caption_projection is not None:
# Add positional embeddings to conditions if >1 UNI are given
if self.transformer.y_pos_embed is not None:
encoder_hidden_states = self.transformer.y_pos_embed(encoder_hidden_states)
encoder_hidden_states = self.transformer.caption_projection(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
# 2. Blocks
block_outputs = ()
for block in self.transformer.transformer_blocks:
if torch.is_grad_enabled() and self.transformer.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
timestep,
cross_attention_kwargs,
None,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
class_labels=None,
)
block_outputs = block_outputs + (hidden_states,)
# 3. controlnet blocks
controlnet_outputs = ()
for t_output, controlnet_block in zip(block_outputs, self.controlnet_blocks):
b_output = controlnet_block(t_output)
controlnet_outputs = controlnet_outputs + (b_output,)
controlnet_outputs = [sample * conditioning_scale for sample in controlnet_outputs]
if not return_dict:
return (controlnet_outputs,)
return PixCellControlNetOutput(controlnet_block_samples=controlnet_outputs)