File size: 35,487 Bytes
baa8e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
from typing import Union
from torch import Tensor
import torch

import comfy.utils
import comfy.controlnet as comfy_cn
from comfy.controlnet import ControlBase, ControlNet, ControlLora, T2IAdapter, broadcast_image_to


def get_properly_arranged_t2i_weights(initial_weights: list[float]):
    new_weights = []
    new_weights.extend([initial_weights[0]]*3)
    new_weights.extend([initial_weights[1]]*3)
    new_weights.extend([initial_weights[2]]*3)
    new_weights.extend([initial_weights[3]]*3)
    return new_weights


class ControlWeightType:
    DEFAULT = "default"
    UNIVERSAL = "universal"
    T2IADAPTER = "t2iadapter"
    CONTROLNET = "controlnet"
    CONTROLLORA = "controllora"
    CONTROLLLLITE = "controllllite"


class ControlWeights:
    def __init__(self, weight_type: str, base_multiplier: float=1.0, flip_weights: bool=False, weights: list[float]=None, weight_mask: Tensor=None):
        self.weight_type = weight_type
        self.base_multiplier = base_multiplier
        self.flip_weights = flip_weights
        self.weights = weights
        if self.weights is not None and self.flip_weights:
            self.weights.reverse()
        self.weight_mask = weight_mask

    def get(self, idx: int) -> Union[float, Tensor]:
        # if weights is not none, return index
        if self.weights is not None:
            return self.weights[idx]
        return 1.0

    @classmethod
    def default(cls):
        return cls(ControlWeightType.DEFAULT)

    @classmethod
    def universal(cls, base_multiplier: float, flip_weights: bool=False):
        return cls(ControlWeightType.UNIVERSAL, base_multiplier=base_multiplier, flip_weights=flip_weights)
    
    @classmethod
    def universal_mask(cls, weight_mask: Tensor):
        return cls(ControlWeightType.UNIVERSAL, weight_mask=weight_mask)

    @classmethod
    def t2iadapter(cls, weights: list[float]=None, flip_weights: bool=False):
        if weights is None:
            weights = [1.0]*12
        return cls(ControlWeightType.T2IADAPTER, weights=weights,flip_weights=flip_weights)

    @classmethod
    def controlnet(cls, weights: list[float]=None, flip_weights: bool=False):
        if weights is None:
            weights = [1.0]*13
        return cls(ControlWeightType.CONTROLNET, weights=weights, flip_weights=flip_weights)
    
    @classmethod
    def controllora(cls, weights: list[float]=None, flip_weights: bool=False):
        if weights is None:
            weights = [1.0]*10
        return cls(ControlWeightType.CONTROLLORA, weights=weights, flip_weights=flip_weights)
    
    @classmethod
    def controllllite(cls, weights: list[float]=None, flip_weights: bool=False):
        if weights is None:
            # TODO: make this have a real value
            weights = [1.0]*200
        return cls(ControlWeightType.CONTROLLLLITE, weights=weights, flip_weights=flip_weights)


class StrengthInterpolation:
    LINEAR = "linear"
    EASE_IN = "ease-in"
    EASE_OUT = "ease-out"
    EASE_IN_OUT = "ease-in-out"
    NONE = "none"


class LatentKeyframe:
    def __init__(self, batch_index: int, strength: float) -> None:
        self.batch_index = batch_index
        self.strength = strength


# always maintain sorted state (by batch_index of LatentKeyframe)
class LatentKeyframeGroup:
    def __init__(self) -> None:
        self.keyframes: list[LatentKeyframe] = []

    def add(self, keyframe: LatentKeyframe) -> None:
        added = False
        # replace existing keyframe if same batch_index
        for i in range(len(self.keyframes)):
            if self.keyframes[i].batch_index == keyframe.batch_index:
                self.keyframes[i] = keyframe
                added = True
                break
        if not added:
            self.keyframes.append(keyframe)
        self.keyframes.sort(key=lambda k: k.batch_index)
    
    def get_index(self, index: int) -> Union[LatentKeyframe, None]:
        try:
            return self.keyframes[index]
        except IndexError:
            return None
    
    def __getitem__(self, index) -> LatentKeyframe:
        return self.keyframes[index]
    
    def is_empty(self) -> bool:
        return len(self.keyframes) == 0

    def clone(self) -> 'LatentKeyframeGroup':
        cloned = LatentKeyframeGroup()
        for tk in self.keyframes:
            cloned.add(tk)
        return cloned


class TimestepKeyframe:
    def __init__(self,
                 start_percent: float = 0.0,
                 strength: float = 1.0,
                 interpolation: str = StrengthInterpolation.NONE,
                 control_weights: ControlWeights = None,
                 latent_keyframes: LatentKeyframeGroup = None,
                 null_latent_kf_strength: float = 0.0,
                 inherit_missing: bool = True,
                 guarantee_usage: bool = True,
                 mask_hint_orig: Tensor = None) -> None:
        self.start_percent = start_percent
        self.start_t = 999999999.9
        self.strength = strength
        self.interpolation = interpolation
        self.control_weights = control_weights
        self.latent_keyframes = latent_keyframes
        self.null_latent_kf_strength = null_latent_kf_strength
        self.inherit_missing = inherit_missing
        self.guarantee_usage = guarantee_usage
        self.mask_hint_orig = mask_hint_orig

    def has_control_weights(self):
        return self.control_weights is not None
    
    def has_latent_keyframes(self):
        return self.latent_keyframes is not None
    
    def has_mask_hint(self):
        return self.mask_hint_orig is not None
    
    
    @classmethod
    def default(cls) -> 'TimestepKeyframe':
        return cls(0.0)


# always maintain sorted state (by start_percent of TimestepKeyFrame)
class TimestepKeyframeGroup:
    def __init__(self) -> None:
        self.keyframes: list[TimestepKeyframe] = []
        self.keyframes.append(TimestepKeyframe.default())

    def add(self, keyframe: TimestepKeyframe) -> None:
        added = False
        # replace existing keyframe if same start_percent
        for i in range(len(self.keyframes)):
            if self.keyframes[i].start_percent == keyframe.start_percent:
                self.keyframes[i] = keyframe
                added = True
                break
        if not added:
            self.keyframes.append(keyframe)
        self.keyframes.sort(key=lambda k: k.start_percent)

    def get_index(self, index: int) -> Union[TimestepKeyframe, None]:
        try:
            return self.keyframes[index]
        except IndexError:
            return None
    
    def has_index(self, index: int) -> int:
        return index >=0 and index < len(self.keyframes)

    def __getitem__(self, index) -> TimestepKeyframe:
        return self.keyframes[index]
    
    def __len__(self) -> int:
        return len(self.keyframes)

    def is_empty(self) -> bool:
        return len(self.keyframes) == 0
    
    def clone(self) -> 'TimestepKeyframeGroup':
        cloned = TimestepKeyframeGroup()
        for tk in self.keyframes:
            cloned.add(tk)
        return cloned
    
    @classmethod
    def default(cls, keyframe: TimestepKeyframe) -> 'TimestepKeyframeGroup':
        group = cls()
        group.keyframes[0] = keyframe
        return group


# used to inject ControlNetAdvanced and T2IAdapterAdvanced control_merge function


class AdvancedControlBase:
    def __init__(self, base: ControlBase, timestep_keyframes: TimestepKeyframeGroup, weights_default: ControlWeights):
        self.base = base
        self.compatible_weights = [ControlWeightType.UNIVERSAL]
        self.add_compatible_weight(weights_default.weight_type)
        # mask for which parts of controlnet output to keep
        self.mask_cond_hint_original = None
        self.mask_cond_hint = None
        self.tk_mask_cond_hint_original = None
        self.tk_mask_cond_hint = None
        self.weight_mask_cond_hint = None
        # actual index values
        self.sub_idxs = None
        self.full_latent_length = 0
        self.context_length = 0
        # timesteps
        self.t: Tensor = None
        self.batched_number: int = None
        # weights + override
        self.weights: ControlWeights = None
        self.weights_default: ControlWeights = weights_default
        self.weights_override: ControlWeights = None
        # latent keyframe + override
        self.latent_keyframes: LatentKeyframeGroup = None
        self.latent_keyframe_override: LatentKeyframeGroup = None
        # initialize timestep_keyframes
        self.set_timestep_keyframes(timestep_keyframes)
        # override some functions
        self.get_control = self.get_control_inject
        self.control_merge = self.control_merge_inject#.__get__(self, type(self))
        self.pre_run = self.pre_run_inject
        self.cleanup = self.cleanup_inject

    def add_compatible_weight(self, control_weight_type: str):
        self.compatible_weights.append(control_weight_type)

    def verify_all_weights(self, throw_error=True):
        # first, check if override exists - if so, only need to check the override
        if self.weights_override is not None:
            if self.weights_override.weight_type not in self.compatible_weights:
                msg = f"Weight override is type {self.weights_override.weight_type}, but loaded {type(self).__name__}" + \
                    f"only supports {self.compatible_weights} weights."
                raise WeightTypeException(msg)
        # otherwise, check all timestep keyframe weights
        else:
            for tk in self.timestep_keyframes.keyframes:
                if tk.has_control_weights() and tk.control_weights.weight_type not in self.compatible_weights:
                    msg = f"Weight on Timestep Keyframe with start_percent={tk.start_percent} is type" + \
                        f"{tk.control_weights.weight_type}, but loaded {type(self).__name__} only supports {self.compatible_weights} weights."
                    raise WeightTypeException(msg)

    def set_timestep_keyframes(self, timestep_keyframes: TimestepKeyframeGroup):
        self.timestep_keyframes = timestep_keyframes if timestep_keyframes else TimestepKeyframeGroup()
        # prepare first timestep_keyframe related stuff
        self.current_timestep_keyframe = None
        self.current_timestep_index = -1
        self.next_timestep_keyframe = None
        self.weights = None
        self.latent_keyframes = None

    def prepare_current_timestep(self, t: Tensor, batched_number: int):
        self.t = t
        self.batched_number = batched_number
        # get current step percent
        curr_t: float = t[0]
        prev_index = self.current_timestep_index
        # if has next index, loop through and see if need to switch
        if self.timestep_keyframes.has_index(self.current_timestep_index+1):
            for i in range(self.current_timestep_index+1, len(self.timestep_keyframes)):
                eval_tk = self.timestep_keyframes[i]
                # check if start percent is less or equal to curr_t
                if eval_tk.start_t >= curr_t:
                    self.current_timestep_index = i
                    self.current_timestep_keyframe = eval_tk
                    # keep track of control weights, latent keyframes, and masks,
                    # accounting for inherit_missing
                    if self.current_timestep_keyframe.has_control_weights():
                        self.weights = self.current_timestep_keyframe.control_weights
                    elif not self.current_timestep_keyframe.inherit_missing:
                        self.weights = self.weights_default
                    if self.current_timestep_keyframe.has_latent_keyframes():
                        self.latent_keyframes = self.current_timestep_keyframe.latent_keyframes
                    elif not self.current_timestep_keyframe.inherit_missing:
                        self.latent_keyframes = None
                    if self.current_timestep_keyframe.has_mask_hint():
                        self.tk_mask_cond_hint_original = self.current_timestep_keyframe.mask_hint_orig
                    elif not self.current_timestep_keyframe.inherit_missing:
                        del self.tk_mask_cond_hint_original
                        self.tk_mask_cond_hint_original = None
                    # if guarantee_usage, stop searching for other TKs
                    if self.current_timestep_keyframe.guarantee_usage:
                        break
                # if eval_tk is outside of percent range, stop looking further
                else:
                    break
        
        # if index changed, apply overrides
        if prev_index != self.current_timestep_index:
            if self.weights_override is not None:
                self.weights = self.weights_override
            if self.latent_keyframe_override is not None:
                self.latent_keyframes = self.latent_keyframe_override

        # make sure weights and latent_keyframes are in a workable state
        # Note: each AdvancedControlBase should create their own get_universal_weights class
        self.prepare_weights()
    
    def prepare_weights(self):
        if self.weights is None or self.weights.weight_type == ControlWeightType.DEFAULT:
            self.weights = self.weights_default
        elif self.weights.weight_type == ControlWeightType.UNIVERSAL:
            # if universal and weight_mask present, no need to convert
            if self.weights.weight_mask is not None:
                return
            self.weights = self.get_universal_weights()
    
    def get_universal_weights(self) -> ControlWeights:
        return self.weights

    def set_cond_hint_mask(self, mask_hint):
        self.mask_cond_hint_original = mask_hint
        return self

    def pre_run_inject(self, model, percent_to_timestep_function):
        self.base.pre_run(model, percent_to_timestep_function)
        self.pre_run_advanced(model, percent_to_timestep_function)
    
    def pre_run_advanced(self, model, percent_to_timestep_function):
        # for each timestep keyframe, calculate the start_t
        for tk in self.timestep_keyframes.keyframes:
            tk.start_t = percent_to_timestep_function(tk.start_percent)
        # clear variables
        self.cleanup_advanced()

    def get_control_inject(self, x_noisy, t, cond, batched_number):
        # prepare timestep and everything related
        self.prepare_current_timestep(t=t, batched_number=batched_number)
        # if should not perform any actions for the controlnet, exit without doing any work
        if self.strength == 0.0 or self.current_timestep_keyframe.strength == 0.0:
            control_prev = None
            if self.previous_controlnet is not None:
                control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
            if control_prev is not None:
                return control_prev
            else:
                return None
        # otherwise, perform normal function
        return self.get_control_advanced(x_noisy, t, cond, batched_number)

    def get_control_advanced(self, x_noisy, t, cond, batched_number):
        pass

    def calc_weight(self, idx: int, x: Tensor, layers: int) -> Union[float, Tensor]:
        if self.weights.weight_mask is not None:
            # prepare weight mask
            self.prepare_weight_mask_cond_hint(x, self.batched_number)
            # adjust mask for current layer and return
            return torch.pow(self.weight_mask_cond_hint, self.get_calc_pow(idx=idx, layers=layers))
        return self.weights.get(idx=idx)
    
    def get_calc_pow(self, idx: int, layers: int) -> int:
        return (layers-1)-idx

    def apply_advanced_strengths_and_masks(self, x: Tensor, batched_number: int):
        # apply strengths, and get batch indeces to null out
        # AKA latents that should not be influenced by ControlNet
        if self.latent_keyframes is not None:
            latent_count = x.size(0)//batched_number
            indeces_to_null = set(range(latent_count))
            mapped_indeces = None
            # if expecting subdivision, will need to translate between subset and actual idx values
            if self.sub_idxs:
                mapped_indeces = {}
                for i, actual in enumerate(self.sub_idxs):
                    mapped_indeces[actual] = i
            for keyframe in self.latent_keyframes:
                real_index = keyframe.batch_index
                # if negative, count from end
                if real_index < 0:
                    real_index += latent_count if self.sub_idxs is None else self.full_latent_length

                # if not mapping indeces, what you see is what you get
                if mapped_indeces is None:
                    if real_index in indeces_to_null:
                        indeces_to_null.remove(real_index)
                # otherwise, see if batch_index is even included in this set of latents
                else:
                    real_index = mapped_indeces.get(real_index, None)
                    if real_index is None:
                        continue
                    indeces_to_null.remove(real_index)

                # if real_index is outside the bounds of latents, don't apply
                if real_index >= latent_count or real_index < 0:
                    continue

                # apply strength for each batched cond/uncond
                for b in range(batched_number):
                    x[(latent_count*b)+real_index] = x[(latent_count*b)+real_index] * keyframe.strength

            # null them out by multiplying by null_latent_kf_strength
            for batch_index in indeces_to_null:
                # apply null for each batched cond/uncond
                for b in range(batched_number):
                    x[(latent_count*b)+batch_index] = x[(latent_count*b)+batch_index] * self.current_timestep_keyframe.null_latent_kf_strength
        # apply masks, resizing mask to required dims
        if self.mask_cond_hint is not None:
            masks = prepare_mask_batch(self.mask_cond_hint, x.shape)
            x[:] = x[:] * masks
        if self.tk_mask_cond_hint is not None:
            masks = prepare_mask_batch(self.tk_mask_cond_hint, x.shape)
            x[:] = x[:] * masks
        # apply timestep keyframe strengths
        if self.current_timestep_keyframe.strength != 1.0:
            x[:] *= self.current_timestep_keyframe.strength
    
    def control_merge_inject(self: 'AdvancedControlBase', control_input, control_output, control_prev, output_dtype):
        out = {'input':[], 'middle':[], 'output': []}

        if control_input is not None:
            for i in range(len(control_input)):
                key = 'input'
                x = control_input[i]
                if x is not None:
                    self.apply_advanced_strengths_and_masks(x, self.batched_number)

                    x *= self.strength * self.calc_weight(i, x, len(control_input))
                    if x.dtype != output_dtype:
                        x = x.to(output_dtype)
                out[key].insert(0, x)

        if control_output is not None:
            for i in range(len(control_output)):
                if i == (len(control_output) - 1):
                    key = 'middle'
                    index = 0
                else:
                    key = 'output'
                    index = i
                x = control_output[i]
                if x is not None:
                    self.apply_advanced_strengths_and_masks(x, self.batched_number)

                    if self.global_average_pooling:
                        x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])

                    x *= self.strength * self.calc_weight(i, x, len(control_output))
                    if x.dtype != output_dtype:
                        x = x.to(output_dtype)

                out[key].append(x)
        if control_prev is not None:
            for x in ['input', 'middle', 'output']:
                o = out[x]
                for i in range(len(control_prev[x])):
                    prev_val = control_prev[x][i]
                    if i >= len(o):
                        o.append(prev_val)
                    elif prev_val is not None:
                        if o[i] is None:
                            o[i] = prev_val
                        else:
                            o[i] += prev_val
        return out

    def prepare_mask_cond_hint(self, x_noisy: Tensor, t, cond, batched_number, dtype=None):
        self._prepare_mask("mask_cond_hint", self.mask_cond_hint_original, x_noisy, t, cond, batched_number, dtype)
        self.prepare_tk_mask_cond_hint(x_noisy, t, cond, batched_number, dtype)

    def prepare_tk_mask_cond_hint(self, x_noisy: Tensor, t, cond, batched_number, dtype=None):
        return self._prepare_mask("tk_mask_cond_hint", self.current_timestep_keyframe.mask_hint_orig, x_noisy, t, cond, batched_number, dtype)

    def prepare_weight_mask_cond_hint(self, x_noisy: Tensor, batched_number, dtype=None):
        return self._prepare_mask("weight_mask_cond_hint", self.weights.weight_mask, x_noisy, t=None, cond=None, batched_number=batched_number, dtype=dtype, direct_attn=True)

    def _prepare_mask(self, attr_name, orig_mask: Tensor, x_noisy: Tensor, t, cond, batched_number, dtype=None, direct_attn=False):
        # make mask appropriate dimensions, if present
        if orig_mask is not None:
            out_mask = getattr(self, attr_name)
            if self.sub_idxs is not None or out_mask is None or x_noisy.shape[2] * 8 != out_mask.shape[1] or x_noisy.shape[3] * 8 != out_mask.shape[2]:
                self._reset_attr(attr_name)
                del out_mask
                # TODO: perform upscale on only the sub_idxs masks at a time instead of all to conserve RAM
                # resize mask and match batch count
                multiplier = 1 if direct_attn else 8
                out_mask = prepare_mask_batch(orig_mask, x_noisy.shape, multiplier=multiplier)
                actual_latent_length = x_noisy.shape[0] // batched_number
                out_mask = comfy.utils.repeat_to_batch_size(out_mask, actual_latent_length if self.sub_idxs is None else self.full_latent_length)
                if self.sub_idxs is not None:
                    out_mask = out_mask[self.sub_idxs]
            # make cond_hint_mask length match x_noise
            if x_noisy.shape[0] != out_mask.shape[0]:
                out_mask = broadcast_image_to(out_mask, x_noisy.shape[0], batched_number)
            # default dtype to be same as x_noisy
            if dtype is None:
                dtype = x_noisy.dtype
            setattr(self, attr_name, out_mask.to(dtype=dtype).to(self.device))
            del out_mask

    def _reset_attr(self, attr_name, new_value=None):
        if hasattr(self, attr_name):
            delattr(self, attr_name)
        setattr(self, attr_name, new_value)

    def cleanup_inject(self):
        self.base.cleanup()
        self.cleanup_advanced()

    def cleanup_advanced(self):
        self.sub_idxs = None
        self.full_latent_length = 0
        self.context_length = 0
        self.t = None
        self.batched_number = None
        self.weights = None
        self.latent_keyframes = None
        # timestep stuff
        self.current_timestep_keyframe = None
        self.next_timestep_keyframe = None
        self.current_timestep_index = -1
        # clear mask hints
        if self.mask_cond_hint is not None:
            del self.mask_cond_hint
            self.mask_cond_hint = None
        if self.tk_mask_cond_hint_original is not None:
            del self.tk_mask_cond_hint_original
            self.tk_mask_cond_hint_original = None
        if self.tk_mask_cond_hint is not None:
            del self.tk_mask_cond_hint
            self.tk_mask_cond_hint = None
        if self.weight_mask_cond_hint is not None:
            del self.weight_mask_cond_hint
            self.weight_mask_cond_hint = None
    
    def copy_to_advanced(self, copied: 'AdvancedControlBase'):
        copied.mask_cond_hint_original = self.mask_cond_hint_original
        copied.weights_override = self.weights_override
        copied.latent_keyframe_override = self.latent_keyframe_override


class ControlNetAdvanced(ControlNet, AdvancedControlBase):
    def __init__(self, control_model, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, device=None):
        super().__init__(control_model=control_model, global_average_pooling=global_average_pooling, device=device)
        AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controlnet())

    def get_universal_weights(self) -> ControlWeights:
        raw_weights = [(self.weights.base_multiplier ** float(12 - i)) for i in range(13)]
        return ControlWeights.controlnet(raw_weights, self.weights.flip_weights)

    def get_control_advanced(self, x_noisy, t, cond, batched_number):
        # perform special version of get_control that supports sliding context and masks
        return self.sliding_get_control(x_noisy, t, cond, batched_number)

    def sliding_get_control(self, x_noisy: Tensor, t, cond, batched_number):
        control_prev = None
        if self.previous_controlnet is not None:
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)

        if self.timestep_range is not None:
            if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
                if control_prev is not None:
                    return control_prev
                else:
                    return None

        output_dtype = x_noisy.dtype

        # make cond_hint appropriate dimensions
        # TODO: change this to not require cond_hint upscaling every step when self.sub_idxs are present
        if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
            # if self.cond_hint_original length greater or equal to real latent count, subdivide it before scaling
            if self.sub_idxs is not None and self.cond_hint_original.size(0) >= self.full_latent_length:
                self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original[self.sub_idxs], x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
            else:
                self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)

        # prepare mask_cond_hint
        self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=self.control_model.dtype)

        context = cond['c_crossattn']
        # uses 'y' in new ComfyUI update
        y = cond.get('y', None)
        if y is None: # TODO: remove this in the future since no longer used by newest ComfyUI
            y = cond.get('c_adm', None)
        if y is not None:
            y = y.to(self.control_model.dtype)
        timestep = self.model_sampling_current.timestep(t)
        x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)

        control = self.control_model(x=x_noisy.to(self.control_model.dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(self.control_model.dtype), y=y)
        return self.control_merge(None, control, control_prev, output_dtype)

    def copy(self):
        c = ControlNetAdvanced(self.control_model, self.timestep_keyframes, global_average_pooling=self.global_average_pooling)
        self.copy_to(c)
        self.copy_to_advanced(c)
        return c
    
    @staticmethod
    def from_vanilla(v: ControlNet, timestep_keyframe: TimestepKeyframeGroup=None) -> 'ControlNetAdvanced':
        return ControlNetAdvanced(control_model=v.control_model, timestep_keyframes=timestep_keyframe,
                                  global_average_pooling=v.global_average_pooling, device=v.device)


class T2IAdapterAdvanced(T2IAdapter, AdvancedControlBase):
    def __init__(self, t2i_model, timestep_keyframes: TimestepKeyframeGroup, channels_in, device=None):
        super().__init__(t2i_model=t2i_model, channels_in=channels_in, device=device)
        AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.t2iadapter())

    def get_universal_weights(self) -> ControlWeights:
        raw_weights = [(self.weights.base_multiplier ** float(7 - i)) for i in range(8)]
        raw_weights = [raw_weights[-8], raw_weights[-3], raw_weights[-2], raw_weights[-1]]
        raw_weights = get_properly_arranged_t2i_weights(raw_weights)
        return ControlWeights.t2iadapter(raw_weights, self.weights.flip_weights)

    def get_calc_pow(self, idx: int, layers: int) -> int:
        # match how T2IAdapterAdvanced deals with universal weights
        indeces = [7 - i for i in range(8)]
        indeces = [indeces[-8], indeces[-3], indeces[-2], indeces[-1]]
        indeces = get_properly_arranged_t2i_weights(indeces)
        return indeces[idx]

    def get_control_advanced(self, x_noisy, t, cond, batched_number):
        # prepare timestep and everything related
        self.prepare_current_timestep(t=t, batched_number=batched_number)
        try:
            # if sub indexes present, replace original hint with subsection
            if self.sub_idxs is not None:
                # cond hints
                full_cond_hint_original = self.cond_hint_original
                del self.cond_hint
                self.cond_hint = None
                self.cond_hint_original = full_cond_hint_original[self.sub_idxs]
            # mask hints
            self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number)
            return super().get_control(x_noisy, t, cond, batched_number)
        finally:
            if self.sub_idxs is not None:
                # replace original cond hint
                self.cond_hint_original = full_cond_hint_original
                del full_cond_hint_original

    def copy(self):
        c = T2IAdapterAdvanced(self.t2i_model, self.timestep_keyframes, self.channels_in)
        self.copy_to(c)
        self.copy_to_advanced(c)
        return c
    
    def cleanup(self):
        super().cleanup()
        self.cleanup_advanced()

    @staticmethod
    def from_vanilla(v: T2IAdapter, timestep_keyframe: TimestepKeyframeGroup=None) -> 'T2IAdapterAdvanced':
        return T2IAdapterAdvanced(t2i_model=v.t2i_model, timestep_keyframes=timestep_keyframe, channels_in=v.channels_in, device=v.device)


class ControlLoraAdvanced(ControlLora, AdvancedControlBase):
    def __init__(self, control_weights, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, device=None):
        super().__init__(control_weights=control_weights, global_average_pooling=global_average_pooling, device=device)
        AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controllora())
        # use some functions from ControlNetAdvanced
        self.get_control_advanced = ControlNetAdvanced.get_control_advanced.__get__(self, type(self))
        self.sliding_get_control = ControlNetAdvanced.sliding_get_control.__get__(self, type(self))
    
    def get_universal_weights(self) -> ControlWeights:
        raw_weights = [(self.weights.base_multiplier ** float(9 - i)) for i in range(10)]
        return ControlWeights.controllora(raw_weights, self.weights.flip_weights)

    def copy(self):
        c = ControlLoraAdvanced(self.control_weights, self.timestep_keyframes, global_average_pooling=self.global_average_pooling)
        self.copy_to(c)
        self.copy_to_advanced(c)
        return c
    
    def cleanup(self):
        super().cleanup()
        self.cleanup_advanced()

    @staticmethod
    def from_vanilla(v: ControlLora, timestep_keyframe: TimestepKeyframeGroup=None) -> 'ControlLoraAdvanced':
        return ControlLoraAdvanced(control_weights=v.control_weights, timestep_keyframes=timestep_keyframe,
                                   global_average_pooling=v.global_average_pooling, device=v.device)


class ControlLLLiteAdvanced(ControlNet, AdvancedControlBase):
    def __init__(self, control_weights, timestep_keyframes: TimestepKeyframeGroup, device=None):
        AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controllllite())


def load_controlnet(ckpt_path, timestep_keyframe: TimestepKeyframeGroup=None, model=None):
    control = comfy_cn.load_controlnet(ckpt_path, model=model)
    # TODO: support controlnet-lllite
    # if is None, see if is a non-vanilla ControlNet
    # if control is None:
    #     controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
    #     # check if lllite
    #     if "lllite_unet" in controlnet_data:
    #         pass
    return convert_to_advanced(control, timestep_keyframe=timestep_keyframe)


def convert_to_advanced(control, timestep_keyframe: TimestepKeyframeGroup=None):
    # if already advanced, leave it be
    if is_advanced_controlnet(control):
        return control
    # if exactly ControlNet returned, transform it into ControlNetAdvanced
    if type(control) == ControlNet:
        return ControlNetAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe)
    # if exactly ControlLora returned, transform it into ControlLoraAdvanced
    elif type(control) == ControlLora:
        return ControlLoraAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe)
    # if T2IAdapter returned, transform it into T2IAdapterAdvanced
    elif isinstance(control, T2IAdapter):
        return T2IAdapterAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe)
    # otherwise, leave it be - might be something I am not supporting yet
    return control


def is_advanced_controlnet(input_object):
    return hasattr(input_object, "sub_idxs")


# adapted from comfy/sample.py
def prepare_mask_batch(mask: Tensor, shape: Tensor, multiplier: int=1, match_dim1=False):
    mask = mask.clone()
    mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[2]*multiplier, shape[3]*multiplier), mode="bilinear")
    if match_dim1:
        mask = torch.cat([mask] * shape[1], dim=1)
    return mask


# applies min-max normalization, from:
# https://stackoverflow.com/questions/68791508/min-max-normalization-of-a-tensor-in-pytorch
def normalize_min_max(x: Tensor, new_min = 0.0, new_max = 1.0):
    x_min, x_max = x.min(), x.max()
    return (((x - x_min)/(x_max - x_min)) * (new_max - new_min)) + new_min

def linear_conversion(x, x_min=0.0, x_max=1.0, new_min=0.0, new_max=1.0):
    return (((x - x_min)/(x_max - x_min)) * (new_max - new_min)) + new_min


class WeightTypeException(TypeError):
    "Raised when weight not compatible with AdvancedControlBase object"
    pass