File size: 10,924 Bytes
baa8e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import numpy as np
from torch import Tensor

import folder_paths

from .control import load_controlnet, convert_to_advanced, ControlWeights, ControlWeightType,\
    LatentKeyframeGroup, TimestepKeyframe, TimestepKeyframeGroup, is_advanced_controlnet
from .control import StrengthInterpolation as SI
from .weight_nodes import DefaultWeights, ScaledSoftMaskedUniversalWeights, ScaledSoftUniversalWeights, SoftControlNetWeights, CustomControlNetWeights, \
    SoftT2IAdapterWeights, CustomT2IAdapterWeights
from .latent_keyframe_nodes import LatentKeyframeGroupNode, LatentKeyframeInterpolationNode, LatentKeyframeBatchedGroupNode, LatentKeyframeNode
from .deprecated_nodes import LoadImagesFromDirectory
from .logger import logger


class TimestepKeyframeNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}, ),
            },
            "optional": {
                "prev_timestep_kf": ("TIMESTEP_KEYFRAME", ),
                "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
                "cn_weights": ("CONTROL_NET_WEIGHTS", ),
                "latent_keyframe": ("LATENT_KEYFRAME", ),
                "null_latent_kf_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
                "inherit_missing": ("BOOLEAN", {"default": True}, ),
                "guarantee_usage": ("BOOLEAN", {"default": True}, ),
                "mask_optional": ("MASK", ),
                #"interpolation": ([SI.LINEAR, SI.EASE_IN, SI.EASE_OUT, SI.EASE_IN_OUT, SI.NONE], {"default": SI.NONE}, ),
            }
        }
    
    RETURN_NAMES = ("TIMESTEP_KF", )
    RETURN_TYPES = ("TIMESTEP_KEYFRAME", )
    FUNCTION = "load_keyframe"

    CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/keyframes"

    def load_keyframe(self,
                      start_percent: float,
                      strength: float=1.0,
                      cn_weights: ControlWeights=None, control_net_weights: ControlWeights=None, # old name
                      latent_keyframe: LatentKeyframeGroup=None,
                      prev_timestep_kf: TimestepKeyframeGroup=None, prev_timestep_keyframe: TimestepKeyframeGroup=None, # old name
                      null_latent_kf_strength: float=0.0,
                      inherit_missing=True,
                      guarantee_usage=True,
                      mask_optional=None,
                      interpolation: str=SI.NONE,):
        control_net_weights = control_net_weights if control_net_weights else cn_weights
        prev_timestep_keyframe = prev_timestep_keyframe if prev_timestep_keyframe else prev_timestep_kf
        if not prev_timestep_keyframe:
            prev_timestep_keyframe = TimestepKeyframeGroup()
        else:
            prev_timestep_keyframe = prev_timestep_keyframe.clone()
        keyframe = TimestepKeyframe(start_percent=start_percent, strength=strength, interpolation=interpolation, null_latent_kf_strength=null_latent_kf_strength,
                                    control_weights=control_net_weights, latent_keyframes=latent_keyframe, inherit_missing=inherit_missing, guarantee_usage=guarantee_usage,
                                    mask_hint_orig=mask_optional)
        prev_timestep_keyframe.add(keyframe)
        return (prev_timestep_keyframe,)


class ControlNetLoaderAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "control_net_name": (folder_paths.get_filename_list("controlnet"), ),
            },
            "optional": {
                "timestep_keyframe": ("TIMESTEP_KEYFRAME", ),
            }
        }

    RETURN_TYPES = ("CONTROL_NET", )
    FUNCTION = "load_controlnet"

    CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…"

    def load_controlnet(self, control_net_name,
                        timestep_keyframe: TimestepKeyframeGroup=None
                        ):
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
        controlnet = load_controlnet(controlnet_path, timestep_keyframe)
        return (controlnet,)
    

class DiffControlNetLoaderAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "model": ("MODEL",),
                "control_net_name": (folder_paths.get_filename_list("controlnet"), )
            },
            "optional": {
                "timestep_keyframe": ("TIMESTEP_KEYFRAME", ),
            }
        }
    
    RETURN_TYPES = ("CONTROL_NET", )
    FUNCTION = "load_controlnet"

    CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…"

    def load_controlnet(self, control_net_name, model,
                        timestep_keyframe: TimestepKeyframeGroup=None
                        ):
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
        controlnet = load_controlnet(controlnet_path, timestep_keyframe, model)
        if is_advanced_controlnet(controlnet):
            controlnet.verify_all_weights()
        return (controlnet,)


class AdvancedControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "positive": ("CONDITIONING", ),
                "negative": ("CONDITIONING", ),
                "control_net": ("CONTROL_NET", ),
                "image": ("IMAGE", ),
                "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
            },
            "optional": {
                "mask_optional": ("MASK", ),
                "timestep_kf": ("TIMESTEP_KEYFRAME", ),
                "latent_kf_override": ("LATENT_KEYFRAME", ),
                "weights_override": ("CONTROL_NET_WEIGHTS", ),
            }
        }

    RETURN_TYPES = ("CONDITIONING","CONDITIONING")
    RETURN_NAMES = ("positive", "negative")
    FUNCTION = "apply_controlnet"

    CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…"

    def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent,
                         mask_optional: Tensor=None,
                         timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None,
                         weights_override: ControlWeights=None):
        if strength == 0:
            return (positive, negative)

        control_hint = image.movedim(-1,1)
        cnets = {}

        out = []
        for conditioning in [positive, negative]:
            c = []
            for t in conditioning:
                d = t[1].copy()

                prev_cnet = d.get('control', None)
                if prev_cnet in cnets:
                    c_net = cnets[prev_cnet]
                else:
                    # copy, convert to advanced if needed, and set cond
                    c_net = convert_to_advanced(control_net.copy()).set_cond_hint(control_hint, strength, (start_percent, end_percent))
                    if is_advanced_controlnet(c_net):
                        # apply optional parameters and overrides, if provided
                        if timestep_kf is not None:
                            c_net.set_timestep_keyframes(timestep_kf)
                        if latent_kf_override is not None:
                            c_net.latent_keyframe_override = latent_kf_override
                        if weights_override is not None:
                            c_net.weights_override = weights_override
                        # verify weights are compatible
                        c_net.verify_all_weights()
                        # set cond hint mask
                        if mask_optional is not None:
                            mask_optional = mask_optional.clone()
                            # if not in the form of a batch, make it so
                            if len(mask_optional.shape) < 3:
                                mask_optional = mask_optional.unsqueeze(0)
                            c_net.set_cond_hint_mask(mask_optional)
                    c_net.set_previous_controlnet(prev_cnet)
                    cnets[prev_cnet] = c_net

                d['control'] = c_net
                d['control_apply_to_uncond'] = False
                n = [t[0], d]
                c.append(n)
            out.append(c)
        return (out[0], out[1])


# NODE MAPPING
NODE_CLASS_MAPPINGS = {
    # Keyframes
    "TimestepKeyframe": TimestepKeyframeNode,
    "LatentKeyframe": LatentKeyframeNode,
    "LatentKeyframeGroup": LatentKeyframeGroupNode,
    "LatentKeyframeBatchedGroup": LatentKeyframeBatchedGroupNode,
    "LatentKeyframeTiming": LatentKeyframeInterpolationNode,
    # Conditioning
    "ACN_AdvancedControlNetApply": AdvancedControlNetApply,
    # Loaders
    "ControlNetLoaderAdvanced": ControlNetLoaderAdvanced,
    "DiffControlNetLoaderAdvanced": DiffControlNetLoaderAdvanced,
    # Weights
    "ScaledSoftControlNetWeights": ScaledSoftUniversalWeights,
    "ScaledSoftMaskedUniversalWeights": ScaledSoftMaskedUniversalWeights,
    "SoftControlNetWeights": SoftControlNetWeights,
    "CustomControlNetWeights": CustomControlNetWeights,
    "SoftT2IAdapterWeights": SoftT2IAdapterWeights,
    "CustomT2IAdapterWeights": CustomT2IAdapterWeights,
    "ACN_DefaultUniversalWeights": DefaultWeights,
    # Image
    "LoadImagesFromDirectory": LoadImagesFromDirectory
}

NODE_DISPLAY_NAME_MAPPINGS = {
    # Keyframes
    "TimestepKeyframe": "Timestep Keyframe πŸ›‚πŸ…πŸ…’πŸ…",
    "LatentKeyframe": "Latent Keyframe πŸ›‚πŸ…πŸ…’πŸ…",
    "LatentKeyframeGroup": "Latent Keyframe Group πŸ›‚πŸ…πŸ…’πŸ…",
    "LatentKeyframeBatchedGroup": "Latent Keyframe Batched Group πŸ›‚πŸ…πŸ…’πŸ…",
    "LatentKeyframeTiming": "Latent Keyframe Interpolation πŸ›‚πŸ…πŸ…’πŸ…",
    # Conditioning
    "ACN_AdvancedControlNetApply": "Apply Advanced ControlNet πŸ›‚πŸ…πŸ…’πŸ…",
    # Loaders
    "ControlNetLoaderAdvanced": "Load Advanced ControlNet Model πŸ›‚πŸ…πŸ…’πŸ…",
    "DiffControlNetLoaderAdvanced": "Load Advanced ControlNet Model (diff) πŸ›‚πŸ…πŸ…’πŸ…",
    # Weights
    "ScaledSoftControlNetWeights": "Scaled Soft Weights πŸ›‚πŸ…πŸ…’πŸ…",
    "ScaledSoftMaskedUniversalWeights": "Scaled Soft Masked Weights πŸ›‚πŸ…πŸ…’πŸ…",
    "SoftControlNetWeights": "ControlNet Soft Weights πŸ›‚πŸ…πŸ…’πŸ…",
    "CustomControlNetWeights": "ControlNet Custom Weights πŸ›‚πŸ…πŸ…’πŸ…",
    "SoftT2IAdapterWeights": "T2IAdapter Soft Weights πŸ›‚πŸ…πŸ…’πŸ…",
    "CustomT2IAdapterWeights": "T2IAdapter Custom Weights πŸ›‚πŸ…πŸ…’πŸ…",
    "ACN_DefaultUniversalWeights": "Force Default Weights πŸ›‚πŸ…πŸ…’πŸ…",
    # Image
    "LoadImagesFromDirectory": "Load Images [DEPRECATED] πŸ›‚πŸ…πŸ…’πŸ…"
}