File size: 10,924 Bytes
baa8e90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import numpy as np
from torch import Tensor
import folder_paths
from .control import load_controlnet, convert_to_advanced, ControlWeights, ControlWeightType,\
LatentKeyframeGroup, TimestepKeyframe, TimestepKeyframeGroup, is_advanced_controlnet
from .control import StrengthInterpolation as SI
from .weight_nodes import DefaultWeights, ScaledSoftMaskedUniversalWeights, ScaledSoftUniversalWeights, SoftControlNetWeights, CustomControlNetWeights, \
SoftT2IAdapterWeights, CustomT2IAdapterWeights
from .latent_keyframe_nodes import LatentKeyframeGroupNode, LatentKeyframeInterpolationNode, LatentKeyframeBatchedGroupNode, LatentKeyframeNode
from .deprecated_nodes import LoadImagesFromDirectory
from .logger import logger
class TimestepKeyframeNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}, ),
},
"optional": {
"prev_timestep_kf": ("TIMESTEP_KEYFRAME", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"cn_weights": ("CONTROL_NET_WEIGHTS", ),
"latent_keyframe": ("LATENT_KEYFRAME", ),
"null_latent_kf_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"inherit_missing": ("BOOLEAN", {"default": True}, ),
"guarantee_usage": ("BOOLEAN", {"default": True}, ),
"mask_optional": ("MASK", ),
#"interpolation": ([SI.LINEAR, SI.EASE_IN, SI.EASE_OUT, SI.EASE_IN_OUT, SI.NONE], {"default": SI.NONE}, ),
}
}
RETURN_NAMES = ("TIMESTEP_KF", )
RETURN_TYPES = ("TIMESTEP_KEYFRAME", )
FUNCTION = "load_keyframe"
CATEGORY = "Adv-ControlNet ππ
π
π
/keyframes"
def load_keyframe(self,
start_percent: float,
strength: float=1.0,
cn_weights: ControlWeights=None, control_net_weights: ControlWeights=None, # old name
latent_keyframe: LatentKeyframeGroup=None,
prev_timestep_kf: TimestepKeyframeGroup=None, prev_timestep_keyframe: TimestepKeyframeGroup=None, # old name
null_latent_kf_strength: float=0.0,
inherit_missing=True,
guarantee_usage=True,
mask_optional=None,
interpolation: str=SI.NONE,):
control_net_weights = control_net_weights if control_net_weights else cn_weights
prev_timestep_keyframe = prev_timestep_keyframe if prev_timestep_keyframe else prev_timestep_kf
if not prev_timestep_keyframe:
prev_timestep_keyframe = TimestepKeyframeGroup()
else:
prev_timestep_keyframe = prev_timestep_keyframe.clone()
keyframe = TimestepKeyframe(start_percent=start_percent, strength=strength, interpolation=interpolation, null_latent_kf_strength=null_latent_kf_strength,
control_weights=control_net_weights, latent_keyframes=latent_keyframe, inherit_missing=inherit_missing, guarantee_usage=guarantee_usage,
mask_hint_orig=mask_optional)
prev_timestep_keyframe.add(keyframe)
return (prev_timestep_keyframe,)
class ControlNetLoaderAdvanced:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"control_net_name": (folder_paths.get_filename_list("controlnet"), ),
},
"optional": {
"timestep_keyframe": ("TIMESTEP_KEYFRAME", ),
}
}
RETURN_TYPES = ("CONTROL_NET", )
FUNCTION = "load_controlnet"
CATEGORY = "Adv-ControlNet ππ
π
π
"
def load_controlnet(self, control_net_name,
timestep_keyframe: TimestepKeyframeGroup=None
):
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = load_controlnet(controlnet_path, timestep_keyframe)
return (controlnet,)
class DiffControlNetLoaderAdvanced:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"control_net_name": (folder_paths.get_filename_list("controlnet"), )
},
"optional": {
"timestep_keyframe": ("TIMESTEP_KEYFRAME", ),
}
}
RETURN_TYPES = ("CONTROL_NET", )
FUNCTION = "load_controlnet"
CATEGORY = "Adv-ControlNet ππ
π
π
"
def load_controlnet(self, control_net_name, model,
timestep_keyframe: TimestepKeyframeGroup=None
):
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = load_controlnet(controlnet_path, timestep_keyframe, model)
if is_advanced_controlnet(controlnet):
controlnet.verify_all_weights()
return (controlnet,)
class AdvancedControlNetApply:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
},
"optional": {
"mask_optional": ("MASK", ),
"timestep_kf": ("TIMESTEP_KEYFRAME", ),
"latent_kf_override": ("LATENT_KEYFRAME", ),
"weights_override": ("CONTROL_NET_WEIGHTS", ),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING")
RETURN_NAMES = ("positive", "negative")
FUNCTION = "apply_controlnet"
CATEGORY = "Adv-ControlNet ππ
π
π
"
def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent,
mask_optional: Tensor=None,
timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None,
weights_override: ControlWeights=None):
if strength == 0:
return (positive, negative)
control_hint = image.movedim(-1,1)
cnets = {}
out = []
for conditioning in [positive, negative]:
c = []
for t in conditioning:
d = t[1].copy()
prev_cnet = d.get('control', None)
if prev_cnet in cnets:
c_net = cnets[prev_cnet]
else:
# copy, convert to advanced if needed, and set cond
c_net = convert_to_advanced(control_net.copy()).set_cond_hint(control_hint, strength, (start_percent, end_percent))
if is_advanced_controlnet(c_net):
# apply optional parameters and overrides, if provided
if timestep_kf is not None:
c_net.set_timestep_keyframes(timestep_kf)
if latent_kf_override is not None:
c_net.latent_keyframe_override = latent_kf_override
if weights_override is not None:
c_net.weights_override = weights_override
# verify weights are compatible
c_net.verify_all_weights()
# set cond hint mask
if mask_optional is not None:
mask_optional = mask_optional.clone()
# if not in the form of a batch, make it so
if len(mask_optional.shape) < 3:
mask_optional = mask_optional.unsqueeze(0)
c_net.set_cond_hint_mask(mask_optional)
c_net.set_previous_controlnet(prev_cnet)
cnets[prev_cnet] = c_net
d['control'] = c_net
d['control_apply_to_uncond'] = False
n = [t[0], d]
c.append(n)
out.append(c)
return (out[0], out[1])
# NODE MAPPING
NODE_CLASS_MAPPINGS = {
# Keyframes
"TimestepKeyframe": TimestepKeyframeNode,
"LatentKeyframe": LatentKeyframeNode,
"LatentKeyframeGroup": LatentKeyframeGroupNode,
"LatentKeyframeBatchedGroup": LatentKeyframeBatchedGroupNode,
"LatentKeyframeTiming": LatentKeyframeInterpolationNode,
# Conditioning
"ACN_AdvancedControlNetApply": AdvancedControlNetApply,
# Loaders
"ControlNetLoaderAdvanced": ControlNetLoaderAdvanced,
"DiffControlNetLoaderAdvanced": DiffControlNetLoaderAdvanced,
# Weights
"ScaledSoftControlNetWeights": ScaledSoftUniversalWeights,
"ScaledSoftMaskedUniversalWeights": ScaledSoftMaskedUniversalWeights,
"SoftControlNetWeights": SoftControlNetWeights,
"CustomControlNetWeights": CustomControlNetWeights,
"SoftT2IAdapterWeights": SoftT2IAdapterWeights,
"CustomT2IAdapterWeights": CustomT2IAdapterWeights,
"ACN_DefaultUniversalWeights": DefaultWeights,
# Image
"LoadImagesFromDirectory": LoadImagesFromDirectory
}
NODE_DISPLAY_NAME_MAPPINGS = {
# Keyframes
"TimestepKeyframe": "Timestep Keyframe ππ
π
π
",
"LatentKeyframe": "Latent Keyframe ππ
π
π
",
"LatentKeyframeGroup": "Latent Keyframe Group ππ
π
π
",
"LatentKeyframeBatchedGroup": "Latent Keyframe Batched Group ππ
π
π
",
"LatentKeyframeTiming": "Latent Keyframe Interpolation ππ
π
π
",
# Conditioning
"ACN_AdvancedControlNetApply": "Apply Advanced ControlNet ππ
π
π
",
# Loaders
"ControlNetLoaderAdvanced": "Load Advanced ControlNet Model ππ
π
π
",
"DiffControlNetLoaderAdvanced": "Load Advanced ControlNet Model (diff) ππ
π
π
",
# Weights
"ScaledSoftControlNetWeights": "Scaled Soft Weights ππ
π
π
",
"ScaledSoftMaskedUniversalWeights": "Scaled Soft Masked Weights ππ
π
π
",
"SoftControlNetWeights": "ControlNet Soft Weights ππ
π
π
",
"CustomControlNetWeights": "ControlNet Custom Weights ππ
π
π
",
"SoftT2IAdapterWeights": "T2IAdapter Soft Weights ππ
π
π
",
"CustomT2IAdapterWeights": "T2IAdapter Custom Weights ππ
π
π
",
"ACN_DefaultUniversalWeights": "Force Default Weights ππ
π
π
",
# Image
"LoadImagesFromDirectory": "Load Images [DEPRECATED] ππ
π
π
"
}
|