File size: 8,951 Bytes
baa8e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import torch
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFilter
import folder_paths
from . import config

LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)


def pil2numpy(image):
    return (np.array(image).astype(np.float32) / 255.0)[np.newaxis, :, :, :]


def pil2tensor(image):
    return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)


def tensor2pil(image):
    return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))


def center_of_bbox(bbox):
    w, h = bbox[2] - bbox[0], bbox[3] - bbox[1]
    return bbox[0] + w/2, bbox[1] + h/2


def combine_masks(masks):
    if len(masks) == 0:
        return None
    else:
        initial_cv2_mask = np.array(masks[0][1])
        combined_cv2_mask = initial_cv2_mask

        for i in range(1, len(masks)):
            cv2_mask = np.array(masks[i][1])

            if combined_cv2_mask.shape == cv2_mask.shape:
                combined_cv2_mask = cv2.bitwise_or(combined_cv2_mask, cv2_mask)
            else:
                # do nothing - incompatible mask
                pass

        mask = torch.from_numpy(combined_cv2_mask)
        return mask


def combine_masks2(masks):
    if len(masks) == 0:
        return None
    else:
        initial_cv2_mask = np.array(masks[0]).astype(np.uint8)
        combined_cv2_mask = initial_cv2_mask

        for i in range(1, len(masks)):
            cv2_mask = np.array(masks[i]).astype(np.uint8)

            if combined_cv2_mask.shape == cv2_mask.shape:
                combined_cv2_mask = cv2.bitwise_or(combined_cv2_mask, cv2_mask)
            else:
                # do nothing - incompatible mask
                pass

        mask = torch.from_numpy(combined_cv2_mask)
        return mask


def bitwise_and_masks(mask1, mask2):
    mask1 = mask1.cpu()
    mask2 = mask2.cpu()
    cv2_mask1 = np.array(mask1)
    cv2_mask2 = np.array(mask2)

    if cv2_mask1.shape == cv2_mask2.shape:
        cv2_mask = cv2.bitwise_and(cv2_mask1, cv2_mask2)
        return torch.from_numpy(cv2_mask)
    else:
        # do nothing - incompatible mask shape: mostly empty mask
        return mask1


def to_binary_mask(mask, threshold=0):
    if len(mask.shape) == 3:
        mask = mask.squeeze(0)

    mask = mask.clone().cpu()
    mask[mask > threshold] = 1.
    mask[mask <= threshold] = 0.
    return mask


def use_gpu_opencv():
    return not config.get_config()['disable_gpu_opencv']


def dilate_mask(mask, dilation_factor, iter=1):
    if dilation_factor == 0:
        return mask

    if len(mask.shape) == 3:
        mask = mask.squeeze(0)

    kernel = np.ones((abs(dilation_factor), abs(dilation_factor)), np.uint8)

    if use_gpu_opencv():
        mask = cv2.UMat(mask)
        kernel = cv2.UMat(kernel)

    if dilation_factor > 0:
        result = cv2.dilate(mask, kernel, iter)
    else:
        result = cv2.erode(mask, kernel, iter)

    if use_gpu_opencv():
        return result.get()
    else:
        return result


def dilate_masks(segmasks, dilation_factor, iter=1):
    if dilation_factor == 0:
        return segmasks

    dilated_masks = []
    kernel = np.ones((abs(dilation_factor), abs(dilation_factor)), np.uint8)

    if use_gpu_opencv():
        kernel = cv2.UMat(kernel)

    for i in range(len(segmasks)):
        cv2_mask = segmasks[i][1]

        if use_gpu_opencv():
            cv2_mask = cv2.UMat(cv2_mask)

        if dilation_factor > 0:
            dilated_mask = cv2.dilate(cv2_mask, kernel, iter)
        else:
            dilated_mask = cv2.erode(cv2_mask, kernel, iter)

        if use_gpu_opencv():
            dilated_mask = dilated_mask.get()

        item = (segmasks[i][0], dilated_mask, segmasks[i][2])
        dilated_masks.append(item)

    return dilated_masks


def feather_mask(mask, thickness, base_alpha=255):
    pil_mask = Image.fromarray(np.uint8(mask * base_alpha))

    # Create a feathered mask by applying a Gaussian blur to the mask
    blurred_mask = pil_mask.filter(ImageFilter.GaussianBlur(thickness))
    feathered_mask = Image.new("L", pil_mask.size, 0)
    feathered_mask.paste(blurred_mask, (0, 0), blurred_mask)
    return feathered_mask


def subtract_masks(mask1, mask2):
    mask1 = mask1.cpu()
    mask2 = mask2.cpu()
    cv2_mask1 = np.array(mask1) * 255
    cv2_mask2 = np.array(mask2) * 255

    if cv2_mask1.shape == cv2_mask2.shape:
        cv2_mask = cv2.subtract(cv2_mask1, cv2_mask2)
        return torch.clamp(torch.from_numpy(cv2_mask) / 255.0, min=0, max=1)
    else:
        # do nothing - incompatible mask shape: mostly empty mask
        return mask1


def add_masks(mask1, mask2):
    mask1 = mask1.cpu()
    mask2 = mask2.cpu()
    cv2_mask1 = np.array(mask1) * 255
    cv2_mask2 = np.array(mask2) * 255

    if cv2_mask1.shape == cv2_mask2.shape:
        cv2_mask = cv2.add(cv2_mask1, cv2_mask2)
        return torch.clamp(torch.from_numpy(cv2_mask) / 255.0, min=0, max=1)
    else:
        # do nothing - incompatible mask shape: mostly empty mask
        return mask1


def normalize_region(limit, startp, size):
    if startp < 0:
        new_endp = min(limit, size)
        new_startp = 0
    elif startp + size > limit:
        new_startp = max(0, limit - size)
        new_endp = limit
    else:
        new_startp = startp
        new_endp = min(limit, startp+size)

    return int(new_startp), int(new_endp)


def make_crop_region(w, h, bbox, crop_factor, crop_min_size=None):
    x1 = bbox[0]
    y1 = bbox[1]
    x2 = bbox[2]
    y2 = bbox[3]

    bbox_w = x2 - x1
    bbox_h = y2 - y1

    crop_w = bbox_w * crop_factor
    crop_h = bbox_h * crop_factor

    if crop_min_size is not None:
        crop_w = max(crop_min_size, crop_w)
        crop_h = max(crop_min_size, crop_h)

    kernel_x = x1 + bbox_w / 2
    kernel_y = y1 + bbox_h / 2

    new_x1 = int(kernel_x - crop_w / 2)
    new_y1 = int(kernel_y - crop_h / 2)

    # make sure position in (w,h)
    new_x1, new_x2 = normalize_region(w, new_x1, crop_w)
    new_y1, new_y2 = normalize_region(h, new_y1, crop_h)

    return [new_x1, new_y1, new_x2, new_y2]


def crop_ndarray4(npimg, crop_region):
    x1 = crop_region[0]
    y1 = crop_region[1]
    x2 = crop_region[2]
    y2 = crop_region[3]

    cropped = npimg[:, y1:y2, x1:x2, :]

    return cropped


def crop_ndarray2(npimg, crop_region):
    x1 = crop_region[0]
    y1 = crop_region[1]
    x2 = crop_region[2]
    y2 = crop_region[3]

    cropped = npimg[y1:y2, x1:x2]

    return cropped


def crop_image(image, crop_region):
    return crop_ndarray4(np.array(image), crop_region)


def to_latent_image(pixels, vae):
    x = pixels.shape[1]
    y = pixels.shape[2]
    if pixels.shape[1] != x or pixels.shape[2] != y:
        pixels = pixels[:, :x, :y, :]
    t = vae.encode(pixels[:, :, :, :3])
    return {"samples": t}


def scale_tensor(w, h, image):
    image = tensor2pil(image)
    scaled_image = image.resize((w, h), resample=LANCZOS)
    return pil2tensor(scaled_image)


def scale_tensor_and_to_pil(w, h, image):
    image = tensor2pil(image)
    return image.resize((w, h), resample=LANCZOS)


def empty_pil_tensor(w=64, h=64):
    image = Image.new("RGB", (w, h))
    draw = ImageDraw.Draw(image)
    draw.rectangle((0, 0, w-1, h-1), fill=(0, 0, 0))
    return pil2tensor(image)


class NonListIterable:
    def __init__(self, data):
        self.data = data

    def __getitem__(self, index):
        return self.data[index]


# author: Trung0246
def add_folder_path_and_extensions(folder_name, full_folder_paths, extensions):
    # Iterate over the list of full folder paths
    for full_folder_path in full_folder_paths:
        # Use the provided function to add each model folder path
        folder_paths.add_model_folder_path(folder_name, full_folder_path)

    # Now handle the extensions. If the folder name already exists, update the extensions
    if folder_name in folder_paths.folder_names_and_paths:
        # Unpack the current paths and extensions
        current_paths, current_extensions = folder_paths.folder_names_and_paths[folder_name]
        # Update the extensions set with the new extensions
        updated_extensions = current_extensions | extensions
        # Reassign the updated tuple back to the dictionary
        folder_paths.folder_names_and_paths[folder_name] = (current_paths, updated_extensions)
    else:
        # If the folder name was not present, add_model_folder_path would have added it with the last path
        # Now we just need to update the set of extensions as it would be an empty set
        # Also ensure that all paths are included (since add_model_folder_path adds only one path at a time)
        folder_paths.folder_names_and_paths[folder_name] = (full_folder_paths, extensions)


# wildcard trick is taken from pythongossss's
class AnyType(str):
    def __ne__(self, __value: object) -> bool:
        return False

any_typ = AnyType("*")