File size: 6,914 Bytes
baa8e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import comfy
import torch
import numpy as np
import latent_preview
from .libs import utils


def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0,
                    noise_mode="CPU", disable_noise=False, start_step=None, last_step=None, force_full_denoise=False,
                    incremental_seed_mode="comfy", variation_seed=None, variation_strength=None, noise=None):
    device = comfy.model_management.get_torch_device()
    noise_device = "cpu" if noise_mode == "CPU" else device
    latent_image = latent["samples"]

    if noise is None:
        if disable_noise:
            noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device=noise_device)
        else:
            batch_inds = latent["batch_index"] if "batch_index" in latent else None
            noise = utils.prepare_noise(latent_image, seed, batch_inds, noise_device, incremental_seed_mode, variation_seed=variation_seed, variation_strength=variation_strength)

    noise_mask = None
    if "noise_mask" in latent:
        noise_mask = latent["noise_mask"]

    preview_format = "JPEG"
    if preview_format not in ["JPEG", "PNG"]:
        preview_format = "JPEG"

    previewer = latent_preview.get_previewer(device, model.model.latent_format)

    pbar = comfy.utils.ProgressBar(steps)
    def callback(step, x0, x, total_steps):
        preview_bytes = None
        if previewer:
            preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
        pbar.update_absolute(step + 1, total_steps, preview_bytes)

    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed)
    out = latent.copy()
    out["samples"] = samples
    return (out, )


class KSampler_inspire:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                     "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                     "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                     "positive": ("CONDITIONING", ),
                     "negative": ("CONDITIONING", ),
                     "latent_image": ("LATENT", ),
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                     "noise_mode": (["GPU(=A1111)", "CPU"],),
                     "batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],),
                     "variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                     }
                }

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "InspirePack/a1111_compat"

    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise, noise_mode, batch_seed_mode="comfy", variation_seed=None, variation_strength=None):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise, noise_mode, incremental_seed_mode=batch_seed_mode, variation_seed=variation_seed, variation_strength=variation_strength)


class KSamplerAdvanced_inspire:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "add_noise": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}),
                     "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
                     "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                     "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                     "positive": ("CONDITIONING", ),
                     "negative": ("CONDITIONING", ),
                     "latent_image": ("LATENT", ),
                     "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                     "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                     "noise_mode": (["GPU(=A1111)", "CPU"],),
                     "return_with_leftover_noise": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}),
                     "batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],),
                     "variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                     },
                "optional":
                    {
                        "noise_opt": ("NOISE",),
                    }
                }

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "InspirePack/a1111_compat"

    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, noise_mode, return_with_leftover_noise, denoise=1.0, batch_seed_mode="comfy", variation_seed=None, variation_strength=None, noise_opt=None):
        force_full_denoise = True

        if return_with_leftover_noise:
            force_full_denoise = False

        disable_noise = False

        if not add_noise:
            disable_noise = True

        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                               denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step,
                               force_full_denoise=force_full_denoise, noise_mode=noise_mode, incremental_seed_mode=batch_seed_mode,
                               variation_seed=variation_seed, variation_strength=variation_strength, noise=noise_opt)


NODE_CLASS_MAPPINGS = {
    "KSampler //Inspire": KSampler_inspire,
    "KSamplerAdvanced //Inspire": KSamplerAdvanced_inspire,
}
NODE_DISPLAY_NAME_MAPPINGS = {
    "KSampler //Inspire": "KSampler (inspire)",
    "KSamplerAdvanced //Inspire": "KSamplerAdvanced (inspire)"
}