File size: 18,685 Bytes
baa8e90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
import os
import re
import json
import sys
import shutil
import yaml
from PIL import Image
import nodes
import torch
import folder_paths
import comfy
import traceback
from server import PromptServer
from .libs import utils
prompt_builder_preset = {}
resource_path = os.path.join(os.path.dirname(__file__), "..", "resources")
resource_path = os.path.abspath(resource_path)
prompts_path = os.path.join(os.path.dirname(__file__), "..", "prompts")
prompts_path = os.path.abspath(prompts_path)
try:
pb_yaml_path = os.path.join(resource_path, 'prompt-builder.yaml')
pb_yaml_path_example = os.path.join(resource_path, 'prompt-builder.yaml.example')
if not os.path.exists(pb_yaml_path):
shutil.copy(pb_yaml_path_example, pb_yaml_path)
with open(pb_yaml_path, 'r', encoding="utf-8") as f:
prompt_builder_preset = yaml.load(f, Loader=yaml.FullLoader)
except Exception as e:
print(f"[Inspire Pack] Failed to load 'prompt-builder.yaml'")
class LoadPromptsFromDir:
@classmethod
def INPUT_TYPES(cls):
global prompts_path
try:
prompt_dirs = [d for d in os.listdir(prompts_path) if os.path.isdir(os.path.join(prompts_path, d))]
except Exception:
prompt_dirs = []
return {"required": {"prompt_dir": (prompt_dirs,)}}
RETURN_TYPES = ("ZIPPED_PROMPT",)
OUTPUT_IS_LIST = (True,)
FUNCTION = "doit"
CATEGORY = "InspirePack/prompt"
def doit(self, prompt_dir):
global prompts_path
prompt_dir = os.path.join(prompts_path, prompt_dir)
files = [f for f in os.listdir(prompt_dir) if f.endswith(".txt")]
files.sort()
prompts = []
for file_name in files:
print(f"file_name: {file_name}")
try:
with open(os.path.join(prompt_dir, file_name), "r", encoding="utf-8") as file:
prompt_data = file.read()
prompt_list = re.split(r'\n\s*-+\s*\n', prompt_data)
for prompt in prompt_list:
pattern = r"positive:(.*?)(?:\n*|$)negative:(.*)"
matches = re.search(pattern, prompt, re.DOTALL)
if matches:
positive_text = matches.group(1).strip()
negative_text = matches.group(2).strip()
result_tuple = (positive_text, negative_text, file_name)
prompts.append(result_tuple)
else:
print(f"[WARN] LoadPromptsFromDir: invalid prompt format in '{file_name}'")
except Exception as e:
print(f"[ERROR] LoadPromptsFromDir: an error occurred while processing '{file_name}': {str(e)}")
return (prompts, )
class LoadPromptsFromFile:
@classmethod
def INPUT_TYPES(cls):
global prompts_path
try:
prompt_files = []
for root, dirs, files in os.walk(prompts_path):
for file in files:
if file.endswith(".txt"):
file_path = os.path.join(root, file)
rel_path = os.path.relpath(file_path, prompts_path)
prompt_files.append(rel_path)
except Exception:
prompt_files = []
return {"required": {"prompt_file": (prompt_files,)}}
RETURN_TYPES = ("ZIPPED_PROMPT",)
OUTPUT_IS_LIST = (True,)
FUNCTION = "doit"
CATEGORY = "InspirePack/prompt"
def doit(self, prompt_file):
prompt_path = os.path.join(prompts_path, prompt_file)
prompts = []
try:
with open(prompt_path, "r", encoding="utf-8") as file:
prompt_data = file.read()
prompt_list = re.split(r'\n\s*-+\s*\n', prompt_data)
pattern = r"positive:(.*?)(?:\n*|$)negative:(.*)"
for prompt in prompt_list:
matches = re.search(pattern, prompt, re.DOTALL)
if matches:
positive_text = matches.group(1).strip()
negative_text = matches.group(2).strip()
result_tuple = (positive_text, negative_text, prompt_file)
prompts.append(result_tuple)
else:
print(f"[WARN] LoadPromptsFromFile: invalid prompt format in '{prompt_file}'")
except Exception as e:
print(f"[ERROR] LoadPromptsFromFile: an error occurred while processing '{prompt_file}': {str(e)}")
return (prompts, )
class UnzipPrompt:
@classmethod
def INPUT_TYPES(s):
return {"required": {"zipped_prompt": ("ZIPPED_PROMPT",), }}
RETURN_TYPES = ("STRING", "STRING", "STRING")
RETURN_NAMES = ("positive", "negative", "name")
FUNCTION = "doit"
CATEGORY = "InspirePack/prompt"
def doit(self, zipped_prompt):
return zipped_prompt
class ZipPrompt:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"positive": ("STRING", {"forceInput": True, "multiline": True}),
"negative": ("STRING", {"forceInput": True, "multiline": True}),
},
"optional": {
"name_opt": ("STRING", {"forceInput": True, "multiline": False})
}
}
RETURN_TYPES = ("ZIPPED_PROMPT",)
FUNCTION = "doit"
CATEGORY = "InspirePack/prompt"
def doit(self, positive, negative, name_opt=""):
return ((positive, negative, name_opt), )
prompt_blacklist = set([
'filename_prefix'
])
class PromptExtractor:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
return {"required": {
"image": (sorted(files), {"image_upload": True}),
"positive_id": ("STRING", {}),
"negative_id": ("STRING", {}),
"info": ("STRING", {"multiline": True})
},
"hidden": {"unique_id": "UNIQUE_ID"},
}
CATEGORY = "InspirePack/prompt"
RETURN_TYPES = ("STRING", "STRING")
RETURN_NAMES = ("positive", "negative")
FUNCTION = "doit"
OUTPUT_NODE = True
def doit(self, image, positive_id, negative_id, info, unique_id):
image_path = folder_paths.get_annotated_filepath(image)
info = Image.open(image_path).info
positive = ""
negative = ""
text = ""
prompt_dicts = {}
node_inputs = {}
def get_node_inputs(x):
if x in node_inputs:
return node_inputs[x]
else:
node_inputs[x] = None
obj = nodes.NODE_CLASS_MAPPINGS.get(x, None)
if obj is not None:
input_types = obj.INPUT_TYPES()
node_inputs[x] = input_types
return input_types
else:
return None
if isinstance(info, dict) and 'workflow' in info:
prompt = json.loads(info['prompt'])
for k, v in prompt.items():
input_types = get_node_inputs(v['class_type'])
if input_types is not None:
inputs = input_types['required'].copy()
if 'optional' in input_types:
inputs.update(input_types['optional'])
for name, value in inputs.items():
if name in prompt_blacklist:
continue
if value[0] == 'STRING' and name in v['inputs']:
prompt_dicts[f"{k}.{name.strip()}"] = (v['class_type'], v['inputs'][name])
for k, v in prompt_dicts.items():
text += f"{k} [{v[0]}] ==> {v[1]}\n"
positive = prompt_dicts.get(positive_id.strip(), "")
negative = prompt_dicts.get(negative_id.strip(), "")
else:
text = "There is no prompt information within the image."
PromptServer.instance.send_sync("inspire-node-feedback", {"node_id": unique_id, "widget_name": "info", "type": "text", "data": text})
return (positive, negative)
class GlobalSeed:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"value": ("INT", {"default": 0, "min": 0, "max": 1125899906842624}),
"mode": ("BOOLEAN", {"default": True, "label_on": "control_before_generate", "label_off": "control_after_generate"}),
"action": (["fixed", "increment", "decrement", "randomize",
"increment for each node", "decrement for each node", "randomize for each node"], ),
"last_seed": ("STRING", {"default": ""}),
}
}
RETURN_TYPES = ()
FUNCTION = "doit"
CATEGORY = "InspirePack/Prompt"
OUTPUT_NODE = True
def doit(self, **kwargs):
return {}
class BindImageListPromptList:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"zipped_prompts": ("ZIPPED_PROMPT",),
"default_positive": ("STRING", {"multiline": True, "placeholder": "default positive"}),
"default_negative": ("STRING", {"multiline": True, "placeholder": "default negative"}),
}
}
INPUT_IS_LIST = True
RETURN_TYPES = ("IMAGE", "STRING", "STRING", "STRING")
RETURN_NAMES = ("image", "positive", "negative", "prompt_label")
OUTPUT_IS_LIST = (True, True, True,)
FUNCTION = "doit"
CATEGORY = "InspirePack/Prompt"
def doit(self, images, zipped_prompts, default_positive, default_negative):
positives = []
negatives = []
prompt_labels = []
if len(images) < len(zipped_prompts):
zipped_prompts = zipped_prompts[:len(images)]
elif len(images) > len(zipped_prompts):
lack = len(images) - len(zipped_prompts)
default_prompt = (default_positive[0], default_negative[0], "default")
zipped_prompts = zipped_prompts[:]
for i in range(lack):
zipped_prompts.append(default_prompt)
for prompt in zipped_prompts:
a, b, c = prompt
positives.append(a)
negatives.append(b)
prompt_labels.append(c)
return (images, positives, negatives, prompt_labels)
class BNK_EncoderWrapper:
def __init__(self, token_normalization, weight_interpretation):
self.token_normalization = token_normalization
self.weight_interpretation = weight_interpretation
def encode(self, clip, text):
if 'BNK_CLIPTextEncodeAdvanced' not in nodes.NODE_CLASS_MAPPINGS:
raise Exception(f"[ERROR] To use MediaPipeFaceMeshDetector, you need to install 'Advanced CLIP Text Encode'")
return nodes.NODE_CLASS_MAPPINGS['BNK_CLIPTextEncodeAdvanced']().encode(clip, text, self.token_normalization, self.weight_interpretation)
class WildcardEncodeInspire:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"clip": ("CLIP",),
"token_normalization": (["none", "mean", "length", "length+mean"], ),
"weight_interpretation": (["comfy", "A1111", "compel", "comfy++", "down_weight"], {'default': 'comfy++'}),
"wildcard_text": ("STRING", {"multiline": True, "dynamicPrompts": False, 'placeholder': 'Wildcard Prmopt (User Input)'}),
"populated_text": ("STRING", {"multiline": True, "dynamicPrompts": False, 'placeholder': 'Populated Prmopt (Will be generated automatically)'}),
"mode": ("BOOLEAN", {"default": True, "label_on": "Populate", "label_off": "Fixed"}),
"Select to add LoRA": (["Select the LoRA to add to the text"] + folder_paths.get_filename_list("loras"), ),
"Select to add Wildcard": (["Select the Wildcard to add to the text"],),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
},
}
CATEGORY = "InspirePack/Prompt"
RETURN_TYPES = ("MODEL", "CLIP", "CONDITIONING", "STRING")
RETURN_NAMES = ("model", "clip", "conditioning", "populated_text")
FUNCTION = "doit"
def doit(self, *args, **kwargs):
populated = kwargs['populated_text']
clip_encoder = BNK_EncoderWrapper(kwargs['token_normalization'], kwargs['weight_interpretation'])
if 'ImpactWildcardEncode' not in nodes.NODE_CLASS_MAPPINGS:
raise Exception(f"[ERROR] To use WildcardEncodeInspire, you need to install 'Impact Pack'")
model, clip, conditioning = nodes.NODE_CLASS_MAPPINGS['ImpactWildcardEncode'].process_with_loras(wildcard_opt=populated, model=kwargs['model'], clip=kwargs['clip'], clip_encoder=clip_encoder)
return (model, clip, conditioning, populated)
class PromptBuilder:
@classmethod
def INPUT_TYPES(s):
global prompt_builder_preset
presets = ["#PRESET"]
return {"required": {
"category": (list(prompt_builder_preset.keys()), ),
"preset": (presets, ),
"text": ("STRING", {"multiline": True}),
},
}
RETURN_TYPES = ("STRING", )
FUNCTION = "doit"
CATEGORY = "InspirePack/Prompt"
def doit(self, category, preset, text):
return (text,)
class SeedExplorer:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"latent": ("LATENT",),
"seed_prompt": ("STRING", {"multiline": True, "dynamicPrompts": False, "pysssss.autocomplete": False}),
"enable_additional": ("BOOLEAN", {"default": True, "label_on": "true", "label_off": "false"}),
"additional_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"additional_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"noise_mode": (["GPU(=A1111)", "CPU"],),
"initial_batch_seed_mode": (["incremental", "comfy"],),
}
}
RETURN_TYPES = ("NOISE",)
FUNCTION = "doit"
CATEGORY = "InspirePack/Prompt"
@staticmethod
def apply_variation(start_noise, seed_items, noise_device, mask=None):
noise = start_noise
for x in seed_items:
if isinstance(x, str):
item = x.split(':')
else:
item = x
if len(item) == 2:
try:
variation_seed = int(item[0])
variation_strength = float(item[1])
noise = utils.apply_variation_noise(noise, noise_device, variation_seed, variation_strength, mask=mask)
except Exception:
print(f"[ERROR] IGNORED: SeedExplorer failed to processing '{x}'")
traceback.print_exc()
return noise
def doit(self, latent, seed_prompt, enable_additional, additional_seed, additional_strength, noise_mode,
initial_batch_seed_mode):
latent_image = latent["samples"]
device = comfy.model_management.get_torch_device()
noise_device = "cpu" if noise_mode == "CPU" else device
seed_prompt = seed_prompt.replace("\n", "")
items = seed_prompt.strip().split(",")
if items == ['']:
items = []
if enable_additional:
items.append((additional_seed, additional_strength))
try:
hd = items[0]
tl = items[1:]
if isinstance(hd, tuple):
hd_seed = int(hd[0])
else:
hd_seed = int(hd)
noise = utils.prepare_noise(latent_image, hd_seed, None, noise_device, initial_batch_seed_mode)
noise = noise.to(device)
noise = SeedExplorer.apply_variation(noise, tl, noise_device)
noise = noise.cpu()
return (noise,)
except Exception:
print(f"[ERROR] IGNORED: SeedExplorer failed")
traceback.print_exc()
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout,
device=noise_device)
return (noise,)
list_counter_map = {}
class ListCounter:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"signal": (utils.any_typ,),
"base_value": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
},
"hidden": {"unique_id": "UNIQUE_ID"},
}
RETURN_TYPES = ("INT",)
FUNCTION = "doit"
CATEGORY = "InspirePack/Util"
def doit(self, signal, base_value, unique_id):
if unique_id not in list_counter_map:
count = 0
else:
count = list_counter_map[unique_id]
list_counter_map[unique_id] = count + 1
return (count + base_value, )
NODE_CLASS_MAPPINGS = {
"LoadPromptsFromDir //Inspire": LoadPromptsFromDir,
"LoadPromptsFromFile //Inspire": LoadPromptsFromFile,
"UnzipPrompt //Inspire": UnzipPrompt,
"ZipPrompt //Inspire": ZipPrompt,
"PromptExtractor //Inspire": PromptExtractor,
"GlobalSeed //Inspire": GlobalSeed,
"BindImageListPromptList //Inspire": BindImageListPromptList,
"WildcardEncode //Inspire": WildcardEncodeInspire,
"PromptBuilder //Inspire": PromptBuilder,
"SeedExplorer //Inspire": SeedExplorer,
"ListCounter //Inspire": ListCounter,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"LoadPromptsFromDir //Inspire": "Load Prompts From Dir (Inspire)",
"LoadPromptsFromFile //Inspire": "Load Prompts From File (Inspire)",
"UnzipPrompt //Inspire": "Unzip Prompt (Inspire)",
"ZipPrompt //Inspire": "Zip Prompt (Inspire)",
"PromptExtractor //Inspire": "Prompt Extractor (Inspire)",
"GlobalSeed //Inspire": "Global Seed (Inspire)",
"BindImageListPromptList //Inspire": "Bind [ImageList, PromptList] (Inspire)",
"WildcardEncode //Inspire": "Wildcard Encode (Inspire)",
"PromptBuilder //Inspire": "Prompt Builder (Inspire)",
"SeedExplorer //Inspire": "Seed Explorer (Inspire)",
"ListCounter //Inspire": "List Counter (Inspire)"
}
|