File size: 9,130 Bytes
baa8e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from comfy.sd import load_lora_for_models
from comfy.utils import load_torch_file
import folder_paths

from .utils import *

class LoraLoaderVanilla:
    def __init__(self):
        self.loaded_lora = None

    @classmethod
    def INPUT_TYPES(s):
        LORA_LIST = sorted(folder_paths.get_filename_list("loras"), key=str.lower)
        return {
            "required": { 
                "model": ("MODEL",),
                "clip": ("CLIP", ),
                "lora_name": (LORA_LIST, ),
                "strength_model": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.1}),
                "strength_clip": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.1}),
                "force_fetch": ("BOOLEAN", {"default": False}),
                "append_loraname_if_empty": ("BOOLEAN", {"default": False}),
            }
        }
    
    RETURN_TYPES = ("MODEL", "CLIP", "LIST", "LIST")
    RETURN_NAMES = ("MODEL", "CLIP", "civitai_tags_list", "meta_tags_list")
    FUNCTION = "load_lora"
    CATEGORY = "autotrigger"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip, force_fetch, append_loraname_if_empty):
        meta_tags_list = sort_tags_by_frequency(get_metadata(lora_name, "loras"))
        civitai_tags_list = load_and_save_tags(lora_name, force_fetch)

        meta_tags_list = append_lora_name_if_empty(meta_tags_list, lora_name, append_loraname_if_empty)
        civitai_tags_list = append_lora_name_if_empty(civitai_tags_list, lora_name, append_loraname_if_empty)

        lora_path = folder_paths.get_full_path("loras", lora_name)
        lora = None
        if self.loaded_lora is not None:
            if self.loaded_lora[0] == lora_path:
                lora = self.loaded_lora[1]
            else:
                temp = self.loaded_lora
                self.loaded_lora = None
                del temp

        if lora is None:
            lora = load_torch_file(lora_path, safe_load=True)
            self.loaded_lora = (lora_path, lora)

        model_lora, clip_lora = load_lora_for_models(model, clip, lora, strength_model, strength_clip)
  
        return (model_lora, clip_lora, civitai_tags_list, meta_tags_list)

class LoraLoaderStackedVanilla:
    @classmethod
    def INPUT_TYPES(s):
        LORA_LIST = folder_paths.get_filename_list("loras")
        return {
            "required": {
               "lora_name": (LORA_LIST,),
               "lora_weight": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
               "force_fetch": ("BOOLEAN", {"default": False}),
               "append_loraname_if_empty": ("BOOLEAN", {"default": False}),
            },
            "optional": {
                "lora_stack": ("LORA_STACK", ),
            }
        }

    RETURN_TYPES = ("LIST", "LIST", "LORA_STACK",)
    RETURN_NAMES = ("civitai_tags_list", "meta_tags_list", "LORA_STACK",)
    FUNCTION = "set_stack"
    #OUTPUT_NODE = False
    CATEGORY = "autotrigger"

    def set_stack(self, lora_name, lora_weight, force_fetch, append_loraname_if_empty, lora_stack=None):
        civitai_tags_list = load_and_save_tags(lora_name, force_fetch)

        meta_tags = get_metadata(lora_name, "loras")
        meta_tags_list = sort_tags_by_frequency(meta_tags)

        civitai_tags_list = append_lora_name_if_empty(civitai_tags_list, lora_name, append_loraname_if_empty)
        meta_tags_list = append_lora_name_if_empty(meta_tags_list, lora_name, append_loraname_if_empty)

        loras = [(lora_name,lora_weight,lora_weight,)]
        if lora_stack is not None:
            loras.extend(lora_stack)

        return (civitai_tags_list, meta_tags_list, loras)

class LoraLoaderAdvanced:
    def __init__(self):
        self.loaded_lora = None

    @classmethod
    def INPUT_TYPES(s):
        LORA_LIST = sorted(folder_paths.get_filename_list("loras"), key=str.lower)
        populate_items(LORA_LIST, "loras")
        return {
            "required": { 
                "model": ("MODEL",),
                "clip": ("CLIP", ),
                "lora_name": (LORA_LIST, ),
                "strength_model": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.1}),
                "strength_clip": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.1}),
                "force_fetch": ("BOOLEAN", {"default": False}),
                "enable_preview": ("BOOLEAN", {"default": False}),
                "append_loraname_if_empty": ("BOOLEAN", {"default": False}),
            }
        }
    
    RETURN_TYPES = ("MODEL", "CLIP", "LIST", "LIST")
    RETURN_NAMES = ("MODEL", "CLIP", "civitai_tags_list", "meta_tags_list")
    FUNCTION = "load_lora"
    CATEGORY = "autotrigger"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip, force_fetch, enable_preview, append_loraname_if_empty):
        meta_tags_list = sort_tags_by_frequency(get_metadata(lora_name["content"], "loras"))
        civitai_tags_list = load_and_save_tags(lora_name["content"], force_fetch)

        civitai_tags_list = append_lora_name_if_empty(civitai_tags_list, lora_name["content"], append_loraname_if_empty)
        meta_tags_list = append_lora_name_if_empty(meta_tags_list, lora_name["content"], append_loraname_if_empty)

        lora_path = folder_paths.get_full_path("loras", lora_name["content"])
        lora = None
        if self.loaded_lora is not None:
            if self.loaded_lora[0] == lora_path:
                lora = self.loaded_lora[1]
            else:
                temp = self.loaded_lora
                self.loaded_lora = None
                del temp

        if lora is None:
            lora = load_torch_file(lora_path, safe_load=True)
            self.loaded_lora = (lora_path, lora)

        model_lora, clip_lora = load_lora_for_models(model, clip, lora, strength_model, strength_clip)
        if enable_preview:
            _, preview = copy_preview_to_temp(lora_name["image"])
            if preview is not None:
                preview_output = {
                    "filename": preview,
                    "subfolder": "lora_preview",
                    "type": "temp"
                }
                return {"ui": {"images": [preview_output]}, "result": (model_lora, clip_lora, civitai_tags_list, meta_tags_list)}


        return (model_lora, clip_lora, civitai_tags_list, meta_tags_list)

class LoraLoaderStackedAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        LORA_LIST = folder_paths.get_filename_list("loras")
        populate_items(LORA_LIST, "loras")
        return {
            "required": {
               "lora_name": (LORA_LIST,),
               "lora_weight": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
               "force_fetch": ("BOOLEAN", {"default": False}),
               "enable_preview": ("BOOLEAN", {"default": False}),
               "append_loraname_if_empty": ("BOOLEAN", {"default": False}),
            },
            "optional": {
                "lora_stack": ("LORA_STACK", ),
            }
        }

    RETURN_TYPES = ("LIST", "LIST", "LORA_STACK",)
    RETURN_NAMES = ("civitai_tags_list", "meta_tags_list", "LORA_STACK",)
    FUNCTION = "set_stack"
    #OUTPUT_NODE = False
    CATEGORY = "autotrigger"

    def set_stack(self, lora_name, lora_weight, force_fetch, enable_preview, append_loraname_if_empty, lora_stack=None):
        civitai_tags_list = load_and_save_tags(lora_name["content"], force_fetch)

        meta_tags = get_metadata(lora_name["content"], "loras")
        meta_tags_list = sort_tags_by_frequency(meta_tags)

        civitai_tags_list = append_lora_name_if_empty(civitai_tags_list, lora_name["content"], append_loraname_if_empty)
        meta_tags_list = append_lora_name_if_empty(meta_tags_list, lora_name["content"], append_loraname_if_empty)

        loras = [(lora_name["content"],lora_weight,lora_weight,)]
        if lora_stack is not None:
            loras.extend(lora_stack)

        if enable_preview:
            _, preview = copy_preview_to_temp(lora_name["image"])
            if preview is not None:
                preview_output = {
                    "filename": preview,
                    "subfolder": "lora_preview",
                    "type": "temp"
                }
                return {"ui": {"images": [preview_output]}, "result": (civitai_tags_list, meta_tags_list, loras)}
        
        return {"result": (civitai_tags_list, meta_tags_list, loras)}


# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
    "LoraLoaderVanilla": LoraLoaderVanilla,
    "LoraLoaderStackedVanilla": LoraLoaderStackedVanilla,
    "LoraLoaderAdvanced": LoraLoaderAdvanced,
    "LoraLoaderStackedAdvanced": LoraLoaderStackedAdvanced,
}

# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
    "LoraLoaderVanilla": "LoraLoaderVanilla",
    "LoraLoaderStackedVanilla": "LoraLoaderStackedVanilla",
    "LoraLoaderAdvanced": "LoraLoaderAdvanced",
    "LoraLoaderStackedAdvanced": "LoraLoaderStackedAdvanced",
}