File size: 11,371 Bytes
baa8e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#---------------------------------------------------------------------------------------------------------------------#
# Comfyroll Custom Nodes by RockOfFire and Akatsuzi     https://github.com/RockOfFire/ComfyUI_Comfyroll_CustomNodes                             
# for ComfyUI                                           https://github.com/comfyanonymous/ComfyUI                                               
#---------------------------------------------------------------------------------------------------------------------#

import numpy as np
import math
import torch
import os 
from PIL import Image, ImageDraw
from ..categories import icons
from ..config import color_mapping, COLORS
from pywavefront import Wavefront    
    
#---------------------------------------------------------------------------------------------------------------------#

def tensor2pil(image):
    return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))

def pil2tensor(image):
    return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)

def align_text(align_txt, img_center_x, img_center_y, img_width, img_height, pos_x, pos_y, txt_width, txt_height, txt_padding):
    if align_txt == "center":
        txt_center_x = img_center_x + pos_x - txt_width / 2
        txt_center_y = img_center_y + pos_y - txt_height / 2
    elif align_txt == "top left":
        txt_center_x = pos_x + txt_padding
        txt_center_y = pos_y + txt_padding            
    if align_txt == "top right":
        txt_center_x = img_width + pos_x - txt_width - txt_padding
        txt_center_y = pos_y + txt_padding
    elif align_txt == "top center":
        txt_center_x = img_width/2 + pos_x - txt_width/2 - txt_padding
        txt_center_y = pos_y + txt_padding               
    elif align_txt == "bottom left":
        txt_center_x = pos_x + txt_padding
        txt_center_y = img_height + pos_y - txt_height - txt_padding
    elif align_txt == "bottom right":
        txt_center_x = img_width + pos_x - txt_width - txt_padding
        txt_center_y = img_height + pos_y - txt_height - txt_padding
    elif align_txt == "bottom center":
        txt_center_x = img_width/2 + pos_x - txt_width/2 - txt_padding
        txt_center_y = img_height + pos_y - txt_height - txt_padding
    return (txt_center_x, txt_center_y, )     

#---------------------------------------------------------------------------------------------------------------------#
class CR_3DPolygon:

    @classmethod
    def INPUT_TYPES(s):
    
        shapes = ["cube","tetrahedron"]
        
        return {"required": {
            "shape": (shapes,),
            "image_width": ("INT", {"default": 512, "min": 64, "max": 2048}),
            "image_height": ("INT", {"default": 512, "min": 64, "max": 2048}),          
            "radius": ("INT", {"default": 100, "min": 2, "max": 2048}),          
            "distance": ("INT", {"default": 200, "min": 2, "max": 2048}), 
            "rotation_angle": ("FLOAT", {"default": 0, "min": 0, "max": 3600, "step": 0.5}),            
        },
    }

    RETURN_TYPES = ("IMAGE", )
    FUNCTION = "draw_cube"
    CATEGORY = icons.get("Comfyroll/Graphics/3D")
    
    def draw_cube(self, shape, image_width, image_height, radius, distance, rotation_angle=45):
        # Create a blank canvas
        size = (image_height, image_width)
        image = Image.new("RGB", size)
        draw = ImageDraw.Draw(image)

        if shape == "cube":
            vertices = [
                (-radius, -radius, -radius),
                (radius, -radius, -radius),
                (radius, radius, -radius),
                (-radius, radius, -radius),
                (-radius, -radius, radius),
                (radius, -radius, radius),
                (radius, radius, radius),
                (-radius, radius, radius)
            ]
            edges = [
                (0, 1), (1, 2), (2, 3), (3, 0),
                (4, 5), (5, 6), (6, 7), (7, 4),
                (0, 4), (1, 5), (2, 6), (3, 7)
            ]
        elif shape == "tetrahedron":
            vertices = [
                (0, radius, 0),
                (radius, -radius, -radius),
                (-radius, -radius, -radius),
                (0, -radius, radius)
            ]
            edges = [
                (0, 1), (0, 2), (0, 3),
                (1, 2), (2, 3), (3, 1)
            ]

        # Function to project 3D points to 2D
        def project_point(point):
            x, y, z = point
            x_2d = x * distance / (z + distance) + size[0] / 2
            y_2d = y * distance / (z + distance) + size[1] / 2
            return x_2d, y_2d

        # Rotate the cube
        rotated_vertices = []
        angle = math.radians(rotation_angle)
        cos_a = math.cos(angle)
        sin_a = math.sin(angle)
        for vertex in vertices:
            x, y, z = vertex
            new_x = x * cos_a - z * sin_a
            new_z = x * sin_a + z * cos_a
            rotated_vertices.append((new_x, y, new_z))

        # Project and draw the rotated cube
        for edge in edges:
            start_point = project_point(rotated_vertices[edge[0]])
            end_point = project_point(rotated_vertices[edge[1]])
            draw.line([start_point, end_point], fill=(255, 255, 255))

        # Convert the PIL image to a PyTorch tensor
        tensor_image = pil2tensor(image)

        return (tensor_image,)

#---------------------------------------------------------------------------------------------------------------------#
class CR_3DSolids:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "image_width": ("INT", {"default": 512, "min": 64, "max": 2048}),
            "image_height": ("INT", {"default": 512, "min": 64, "max": 2048}),          
            "radius": ("INT", {"default": 100, "min": 2, "max": 2048}),
            "height": ("INT", {"default": 100, "min": 2, "max": 2048}),
            "distance": ("INT", {"default": 200, "min": 2, "max": 2048}),            
            "rotation_angle": ("FLOAT", {"default": 0, "min": 0, "max": 3600, "step": 0.5}),           
        },
    }

    RETURN_TYPES = ("IMAGE", )
    FUNCTION = "draw"
    CATEGORY = icons.get("Comfyroll/Graphics/3D")

    def draw(self, image_width, image_height, radius, height, distance, rotation_angle=45):
    
        # Create a blank canvas
        size = (image_height, image_width)
        image = Image.new("RGB", size)
        draw = ImageDraw.Draw(image)

        # Define the cone's vertices
        vertices = [
            (0, height / 2, 0),
            (0, -height / 2, 0)
        ]

        num_points = 20  # Number of points to approximate the circular base
        base_points = [
            (radius * math.cos(2 * math.pi * i / num_points), -height / 2, radius * math.sin(2 * math.pi * i / num_points))
            for i in range(num_points)
        ]
        vertices = vertices + base_points

        # Define the cone's edges as pairs of vertices
        edges = []
        for i in range(num_points):
            edges.append((0, i + 2))
            edges.append((1, i + 2))
            edges.append((i + 2, (i + 3) if i < num_points - 1 else 2))

        # Function to project 3D points to 2D
        def project_point(point):
            x, y, z = point
            x_2d = x * distance / (z + distance) + size[0] / 2
            y_2d = y * distance / (z + distance) + size[1] / 2
            return x_2d, y_2d

        # Rotate the cone
        rotated_vertices = []
        angle = math.radians(rotation_angle)
        cos_a = math.cos(angle)
        sin_a = math.sin(angle)
        for vertex in vertices:
            x, y, z = vertex
            new_x = x * cos_a - z * sin_a
            new_z = x * sin_a + z * cos_a
            rotated_vertices.append((new_x, y, new_z))

        # Project and draw the rotated cone's faces with different colors
        colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255)]  # Example colors
        for i in range(num_points):
            vertices_indices = [0, i + 2, (i + 3) if i < num_points - 1 else 2]
            face_vertices = [project_point(rotated_vertices[idx]) for idx in vertices_indices]
            fill_color = colors[i % 3]  # Cycle through colors for each face
            draw.polygon(face_vertices, fill=fill_color)

        # Draw the edges
        for edge in edges:
            start_point = project_point(rotated_vertices[edge[0]])
            end_point = project_point(rotated_vertices[edge[1]])
            draw.line([start_point, end_point], fill=(0, 0, 0))

        # Convert the PIL image to a PyTorch tensor
        tensor_image = pil2tensor(image)

        return (tensor_image,)

#---------------------------------------------------------------------------------------------------------------------#

class CR_DrawOBJ:

    @classmethod
    def INPUT_TYPES(s):
    
        obj_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), "obj")
        file_list = [f for f in os.listdir(obj_dir) if os.path.isfile(os.path.join(obj_dir, f)) and f.lower().endswith(".obj")]      

    
        return {"required": {
            "image_width": ("INT", {"default": 512, "min": 64, "max": 2048}),
            "image_height": ("INT", {"default": 512, "min": 64, "max": 2048}),
            "obj_name": (file_list,),            
            "line_color": (COLORS[1:],),           
        },
    }

    RETURN_TYPES = ("IMAGE", )
    FUNCTION = "draw_wireframe"
    CATEGORY = icons.get("Comfyroll/Graphics/3D")
    
    def draw_wireframe(self, obj_name, image_width=800, image_height=800, line_color="black"):

        # Load the OBJ file
        obj_file = "obj\\" + str(obj_name)   
        resolved_obj_path = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), obj_file)
        scene = Wavefront(resolved_obj_path)

        # Create a blank image
        img = Image.new("RGB", (image_width, image_height), (0, 0, 0))
        draw = ImageDraw.Draw(img)

        for name, material in scene.materials.items():
            for face in material.mesh.faces:
                vertices = [scene.vertices[i] for i in face]

                # Draw lines between vertices to create wireframe
                for i in range(len(vertices)):
                    x1, y1, z1 = vertices[i]
                    x2, y2, z2 = vertices[(i + 1) % len(vertices)]

                    # Scale and translate vertices to fit the image
                    x1 = int((x1 + 1) * image_width / 2)
                    y1 = int((1 - y1) * image_height / 2)
                    x2 = int((x2 + 1) * image_width / 2)
                    y2 = int((1 - y2) * image_height / 2)

                    draw.line([(x1, y1), (x2, y2)], fill=line_color)

        # Convert the PIL image to a PyTorch tensor
        tensor_image = pil2tensor(img)

        return (tensor_image,)    

#---------------------------------------------------------------------------------------------------------------------#
# MAPPINGS
#---------------------------------------------------------------------------------------------------------------------#
# For reference only, actual mappings are in __init__.py
'''
NODE_CLASS_MAPPINGS = {
    "CR 3D Polygon":CR_3DPolygon,
    "CR 3D Solids":CR_3DSolids,
    "CR Draw OBJ":CR_DrawOBJ,
}
'''