File size: 34,438 Bytes
baa8e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
import torch
import contextlib
import os
import math

import comfy.utils
import comfy.model_management
from comfy.clip_vision import clip_preprocess
from comfy.ldm.modules.attention import optimized_attention
import folder_paths

from torch import nn
from PIL import Image
import torch.nn.functional as F
import torchvision.transforms as TT

from .resampler import Resampler

# set the models directory backward compatible
GLOBAL_MODELS_DIR = os.path.join(folder_paths.models_dir, "ipadapter")
MODELS_DIR = GLOBAL_MODELS_DIR if os.path.isdir(GLOBAL_MODELS_DIR) else os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
if "ipadapter" not in folder_paths.folder_names_and_paths:
    folder_paths.folder_names_and_paths["ipadapter"] = ([MODELS_DIR], folder_paths.supported_pt_extensions)
else:
    folder_paths.folder_names_and_paths["ipadapter"][1].update(folder_paths.supported_pt_extensions)

class MLPProjModel(torch.nn.Module):
    """SD model with image prompt"""
    def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
        super().__init__()
        
        self.proj = torch.nn.Sequential(
            torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
            torch.nn.GELU(),
            torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
            torch.nn.LayerNorm(cross_attention_dim)
        )
        
    def forward(self, image_embeds):
        clip_extra_context_tokens = self.proj(image_embeds)
        return clip_extra_context_tokens

class ImageProjModel(nn.Module):
    def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
        super().__init__()
        
        self.cross_attention_dim = cross_attention_dim
        self.clip_extra_context_tokens = clip_extra_context_tokens
        self.proj = nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
        self.norm = nn.LayerNorm(cross_attention_dim)
        
    def forward(self, image_embeds):
        embeds = image_embeds
        clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
        clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
        return clip_extra_context_tokens

class To_KV(nn.Module):
    def __init__(self, state_dict):
        super().__init__()

        self.to_kvs = nn.ModuleDict()
        for key, value in state_dict.items():
            self.to_kvs[key.replace(".weight", "").replace(".", "_")] = nn.Linear(value.shape[1], value.shape[0], bias=False)
            self.to_kvs[key.replace(".weight", "").replace(".", "_")].weight.data = value

def set_model_patch_replace(model, patch_kwargs, key):
    to = model.model_options["transformer_options"]
    if "patches_replace" not in to:
        to["patches_replace"] = {}
    if "attn2" not in to["patches_replace"]:
        to["patches_replace"]["attn2"] = {}
    if key not in to["patches_replace"]["attn2"]:
        patch = CrossAttentionPatch(**patch_kwargs)
        to["patches_replace"]["attn2"][key] = patch
    else:
        to["patches_replace"]["attn2"][key].set_new_condition(**patch_kwargs)

def image_add_noise(image, noise):
    image = image.permute([0,3,1,2])
    torch.manual_seed(0) # use a fixed random for reproducible results
    transforms = TT.Compose([
        TT.CenterCrop(min(image.shape[2], image.shape[3])),
        TT.Resize((224, 224), interpolation=TT.InterpolationMode.BICUBIC, antialias=True),
        TT.ElasticTransform(alpha=75.0, sigma=noise*3.5), # shuffle the image
        TT.RandomVerticalFlip(p=1.0), # flip the image to change the geometry even more
        TT.RandomHorizontalFlip(p=1.0),
    ])
    image = transforms(image.cpu())
    image = image.permute([0,2,3,1])
    image = image + ((0.25*(1-noise)+0.05) * torch.randn_like(image) )   # add further random noise
    return image

def zeroed_hidden_states(clip_vision, batch_size):
    image = torch.zeros([batch_size, 224, 224, 3])
    comfy.model_management.load_model_gpu(clip_vision.patcher)
    pixel_values = clip_preprocess(image.to(clip_vision.load_device))

    if clip_vision.dtype != torch.float32:
        precision_scope = torch.autocast
    else:
        precision_scope = lambda a, b: contextlib.nullcontext(a)

    with precision_scope(comfy.model_management.get_autocast_device(clip_vision.load_device), torch.float32):
        outputs = clip_vision.model(pixel_values, intermediate_output=-2)

    # we only need the penultimate hidden states
    outputs = outputs[1].to(comfy.model_management.intermediate_device())

    return outputs

def min_(tensor_list):
    # return the element-wise min of the tensor list.
    x = torch.stack(tensor_list)
    mn = x.min(axis=0)[0]
    return torch.clamp(mn, min=0)
    
def max_(tensor_list):
    # return the element-wise max of the tensor list.
    x = torch.stack(tensor_list)
    mx = x.max(axis=0)[0]
    return torch.clamp(mx, max=1)

# From https://github.com/Jamy-L/Pytorch-Contrast-Adaptive-Sharpening/
def contrast_adaptive_sharpening(image, amount):
    img = F.pad(image, pad=(1, 1, 1, 1)).cpu()

    a = img[..., :-2, :-2]
    b = img[..., :-2, 1:-1]
    c = img[..., :-2, 2:]
    d = img[..., 1:-1, :-2]
    e = img[..., 1:-1, 1:-1]
    f = img[..., 1:-1, 2:]
    g = img[..., 2:, :-2]
    h = img[..., 2:, 1:-1]
    i = img[..., 2:, 2:]
    
    # Computing contrast
    cross = (b, d, e, f, h)
    mn = min_(cross)
    mx = max_(cross)
    
    diag = (a, c, g, i)
    mn2 = min_(diag)
    mx2 = max_(diag)
    mx = mx + mx2
    mn = mn + mn2
    
    # Computing local weight
    inv_mx = torch.reciprocal(mx)
    amp = inv_mx * torch.minimum(mn, (2 - mx))

    # scaling
    amp = torch.sqrt(amp)
    w = - amp * (amount * (1/5 - 1/8) + 1/8)
    div = torch.reciprocal(1 + 4*w)

    output = ((b + d + f + h)*w + e) * div
    output = output.clamp(0, 1)
    output = torch.nan_to_num(output)

    return (output)

class IPAdapter(nn.Module):
    def __init__(self, ipadapter_model, cross_attention_dim=1024, output_cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4, is_sdxl=False, is_plus=False, is_full=False):
        super().__init__()

        self.clip_embeddings_dim = clip_embeddings_dim
        self.cross_attention_dim = cross_attention_dim
        self.output_cross_attention_dim = output_cross_attention_dim
        self.clip_extra_context_tokens = clip_extra_context_tokens
        self.is_sdxl = is_sdxl
        self.is_full = is_full

        self.image_proj_model = self.init_proj() if not is_plus else self.init_proj_plus()
        self.image_proj_model.load_state_dict(ipadapter_model["image_proj"])
        self.ip_layers = To_KV(ipadapter_model["ip_adapter"])

    def init_proj(self):
        image_proj_model = ImageProjModel(
            cross_attention_dim=self.cross_attention_dim,
            clip_embeddings_dim=self.clip_embeddings_dim,
            clip_extra_context_tokens=self.clip_extra_context_tokens
        )
        return image_proj_model

    def init_proj_plus(self):
        if self.is_full:
            image_proj_model = MLPProjModel(
                cross_attention_dim=self.cross_attention_dim,
                clip_embeddings_dim=self.clip_embeddings_dim
            )
        else:
            image_proj_model = Resampler(
                dim=self.cross_attention_dim,
                depth=4,
                dim_head=64,
                heads=20 if self.is_sdxl else 12,
                num_queries=self.clip_extra_context_tokens,
                embedding_dim=self.clip_embeddings_dim,
                output_dim=self.output_cross_attention_dim,
                ff_mult=4
            )
        return image_proj_model

    @torch.inference_mode()
    def get_image_embeds(self, clip_embed, clip_embed_zeroed):
        image_prompt_embeds = self.image_proj_model(clip_embed)
        uncond_image_prompt_embeds = self.image_proj_model(clip_embed_zeroed)
        return image_prompt_embeds, uncond_image_prompt_embeds

class CrossAttentionPatch:
    # forward for patching
    def __init__(self, weight, ipadapter, device, dtype, number, cond, uncond, weight_type, mask=None, sigma_start=0.0, sigma_end=1.0, unfold_batch=False):
        self.weights = [weight]
        self.ipadapters = [ipadapter]
        self.conds = [cond]
        self.unconds = [uncond]
        self.device = 'cuda' if 'cuda' in device.type else 'cpu'
        self.dtype = dtype if 'cuda' in self.device else torch.bfloat16
        self.number = number
        self.weight_type = [weight_type]
        self.masks = [mask]
        self.sigma_start = [sigma_start]
        self.sigma_end = [sigma_end]
        self.unfold_batch = [unfold_batch]

        self.k_key = str(self.number*2+1) + "_to_k_ip"
        self.v_key = str(self.number*2+1) + "_to_v_ip"
    
    def set_new_condition(self, weight, ipadapter, device, dtype, number, cond, uncond, weight_type, mask=None, sigma_start=0.0, sigma_end=1.0, unfold_batch=False):
        self.weights.append(weight)
        self.ipadapters.append(ipadapter)
        self.conds.append(cond)
        self.unconds.append(uncond)
        self.masks.append(mask)
        self.device = 'cuda' if 'cuda' in device.type else 'cpu'
        self.dtype = dtype if 'cuda' in self.device else torch.bfloat16
        self.weight_type.append(weight_type)
        self.sigma_start.append(sigma_start)
        self.sigma_end.append(sigma_end)
        self.unfold_batch.append(unfold_batch)

    def __call__(self, n, context_attn2, value_attn2, extra_options):
        org_dtype = n.dtype
        cond_or_uncond = extra_options["cond_or_uncond"]
        sigma = extra_options["sigmas"][0].item() if 'sigmas' in extra_options else 999999999.9

        # extra options for AnimateDiff
        ad_params = extra_options['ad_params'] if "ad_params" in extra_options else None

        with torch.autocast(device_type=self.device, dtype=self.dtype):
            q = n
            k = context_attn2
            v = value_attn2
            b = q.shape[0]
            qs = q.shape[1]
            batch_prompt = b // len(cond_or_uncond)
            out = optimized_attention(q, k, v, extra_options["n_heads"])
            _, _, lh, lw = extra_options["original_shape"]
            
            for weight, cond, uncond, ipadapter, mask, weight_type, sigma_start, sigma_end, unfold_batch in zip(self.weights, self.conds, self.unconds, self.ipadapters, self.masks, self.weight_type, self.sigma_start, self.sigma_end, self.unfold_batch):
                if sigma > sigma_start or sigma < sigma_end:
                    continue

                if unfold_batch and cond.shape[0] > 1:
                    # Check AnimateDiff context window
                    if ad_params is not None and ad_params["sub_idxs"] is not None:
                        # if images length matches or exceeds full_length get sub_idx images
                        if cond.shape[0] >= ad_params["full_length"]:
                            cond = torch.Tensor(cond[ad_params["sub_idxs"]])
                            uncond = torch.Tensor(uncond[ad_params["sub_idxs"]])
                        # otherwise, need to do more to get proper sub_idxs masks
                        else:
                            # check if images length matches full_length - if not, make it match
                            if cond.shape[0] < ad_params["full_length"]:
                                cond = torch.cat((cond, cond[-1:].repeat((ad_params["full_length"]-cond.shape[0], 1, 1))), dim=0)
                                uncond = torch.cat((uncond, uncond[-1:].repeat((ad_params["full_length"]-uncond.shape[0], 1, 1))), dim=0)
                            # if we have too many remove the excess (should not happen, but just in case)
                            if cond.shape[0] > ad_params["full_length"]:
                                cond = cond[:ad_params["full_length"]]
                                uncond = uncond[:ad_params["full_length"]]
                            cond = cond[ad_params["sub_idxs"]]
                            uncond = uncond[ad_params["sub_idxs"]]

                    # if we don't have enough reference images repeat the last one until we reach the right size
                    if cond.shape[0] < batch_prompt:
                        cond = torch.cat((cond, cond[-1:].repeat((batch_prompt-cond.shape[0], 1, 1))), dim=0)
                        uncond = torch.cat((uncond, uncond[-1:].repeat((batch_prompt-uncond.shape[0], 1, 1))), dim=0)
                    # if we have too many remove the exceeding
                    elif cond.shape[0] > batch_prompt:
                        cond = cond[:batch_prompt]
                        uncond = uncond[:batch_prompt]

                    k_cond = ipadapter.ip_layers.to_kvs[self.k_key](cond)
                    k_uncond = ipadapter.ip_layers.to_kvs[self.k_key](uncond)
                    v_cond = ipadapter.ip_layers.to_kvs[self.v_key](cond)
                    v_uncond = ipadapter.ip_layers.to_kvs[self.v_key](uncond)
                else:
                    k_cond = ipadapter.ip_layers.to_kvs[self.k_key](cond).repeat(batch_prompt, 1, 1)
                    k_uncond = ipadapter.ip_layers.to_kvs[self.k_key](uncond).repeat(batch_prompt, 1, 1)
                    v_cond = ipadapter.ip_layers.to_kvs[self.v_key](cond).repeat(batch_prompt, 1, 1)
                    v_uncond = ipadapter.ip_layers.to_kvs[self.v_key](uncond).repeat(batch_prompt, 1, 1)

                if weight_type.startswith("linear"):
                    ip_k = torch.cat([(k_cond, k_uncond)[i] for i in cond_or_uncond], dim=0) * weight
                    ip_v = torch.cat([(v_cond, v_uncond)[i] for i in cond_or_uncond], dim=0) * weight
                else:
                    ip_k = torch.cat([(k_cond, k_uncond)[i] for i in cond_or_uncond], dim=0)
                    ip_v = torch.cat([(v_cond, v_uncond)[i] for i in cond_or_uncond], dim=0)

                    if weight_type.startswith("channel"):
                        # code by Lvmin Zhang at Stanford University as also seen on Fooocus IPAdapter implementation
                        # please read licensing notes https://github.com/lllyasviel/Fooocus/blob/main/fooocus_extras/ip_adapter.py#L225
                        ip_v_mean = torch.mean(ip_v, dim=1, keepdim=True)
                        ip_v_offset = ip_v - ip_v_mean
                        _, _, C = ip_k.shape
                        channel_penalty = float(C) / 1280.0
                        W = weight * channel_penalty
                        ip_k = ip_k * W
                        ip_v = ip_v_offset + ip_v_mean * W

                out_ip = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"])           
                if weight_type.startswith("original"):
                    out_ip = out_ip * weight

                if mask is not None:
                    # TODO: needs checking
                    mask_h = max(1, round(lh / math.sqrt(lh * lw / qs)))
                    mask_w = qs // mask_h

                    # check if using AnimateDiff and sliding context window
                    if (mask.shape[0] > 1 and ad_params is not None and ad_params["sub_idxs"] is not None):
                        # if mask length matches or exceeds full_length, just get sub_idx masks, resize, and continue
                        if mask.shape[0] >= ad_params["full_length"]:
                            mask_downsample = torch.Tensor(mask[ad_params["sub_idxs"]])
                            mask_downsample = F.interpolate(mask_downsample.unsqueeze(1), size=(mask_h, mask_w), mode="bicubic").squeeze(1)
                        # otherwise, need to do more to get proper sub_idxs masks
                        else:
                            # resize to needed attention size (to save on memory)
                            mask_downsample = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bicubic").squeeze(1)
                            # check if mask length matches full_length - if not, make it match
                            if mask_downsample.shape[0] < ad_params["full_length"]:
                                mask_downsample = torch.cat((mask_downsample, mask_downsample[-1:].repeat((ad_params["full_length"]-mask_downsample.shape[0], 1, 1))), dim=0)
                            # if we have too many remove the excess (should not happen, but just in case)
                            if mask_downsample.shape[0] > ad_params["full_length"]:
                                mask_downsample = mask_downsample[:ad_params["full_length"]]
                            # now, select sub_idxs masks
                            mask_downsample = mask_downsample[ad_params["sub_idxs"]]
                    # otherwise, perform usual mask interpolation
                    else:
                        mask_downsample = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bicubic").squeeze(1)

                    # if we don't have enough masks repeat the last one until we reach the right size
                    if mask_downsample.shape[0] < batch_prompt:
                        mask_downsample = torch.cat((mask_downsample, mask_downsample[-1:, :, :].repeat((batch_prompt-mask_downsample.shape[0], 1, 1))), dim=0)
                    # if we have too many remove the exceeding
                    elif mask_downsample.shape[0] > batch_prompt:
                        mask_downsample = mask_downsample[:batch_prompt, :, :]
                    
                    # repeat the masks
                    mask_downsample = mask_downsample.repeat(len(cond_or_uncond), 1, 1)
                    mask_downsample = mask_downsample.view(mask_downsample.shape[0], -1, 1).repeat(1, 1, out.shape[2])

                    out_ip = out_ip * mask_downsample

                out = out + out_ip

        return out.to(dtype=org_dtype)

class IPAdapterModelLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ipadapter_file": (folder_paths.get_filename_list("ipadapter"), )}}

    RETURN_TYPES = ("IPADAPTER",)
    FUNCTION = "load_ipadapter_model"

    CATEGORY = "ipadapter"

    def load_ipadapter_model(self, ipadapter_file):
        ckpt_path = folder_paths.get_full_path("ipadapter", ipadapter_file)

        model = comfy.utils.load_torch_file(ckpt_path, safe_load=True)

        if ckpt_path.lower().endswith(".safetensors"):
            st_model = {"image_proj": {}, "ip_adapter": {}}
            for key in model.keys():
                if key.startswith("image_proj."):
                    st_model["image_proj"][key.replace("image_proj.", "")] = model[key]
                elif key.startswith("ip_adapter."):
                    st_model["ip_adapter"][key.replace("ip_adapter.", "")] = model[key]
            model = st_model
                    
        if not "ip_adapter" in model.keys() or not model["ip_adapter"]:
            raise Exception("invalid IPAdapter model {}".format(ckpt_path))

        return (model,)

class IPAdapterApply:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "ipadapter": ("IPADAPTER", ),
                "clip_vision": ("CLIP_VISION",),
                "image": ("IMAGE",),
                "model": ("MODEL", ),
                "weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
                "noise": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
                "weight_type": (["original", "linear", "channel penalty"], ),
                "start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
                "end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
                "unfold_batch": ("BOOLEAN", { "default": False }),
            },
            "optional": {
                "attn_mask": ("MASK",),
            }
        }

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "apply_ipadapter"
    CATEGORY = "ipadapter"

    def apply_ipadapter(self, ipadapter, model, weight, clip_vision=None, image=None, weight_type="original", noise=None, embeds=None, attn_mask=None, start_at=0.0, end_at=1.0, unfold_batch=False):
        self.dtype = model.model.diffusion_model.dtype
        self.device = comfy.model_management.get_torch_device()
        self.weight = weight
        self.is_full = "proj.0.weight" in ipadapter["image_proj"]
        self.is_plus = self.is_full or "latents" in ipadapter["image_proj"]

        output_cross_attention_dim = ipadapter["ip_adapter"]["1.to_k_ip.weight"].shape[1]
        self.is_sdxl = output_cross_attention_dim == 2048
        cross_attention_dim = 1280 if self.is_plus and self.is_sdxl else output_cross_attention_dim
        clip_extra_context_tokens = 16 if self.is_plus else 4

        if embeds is not None:
            embeds = torch.unbind(embeds)
            clip_embed = embeds[0].cpu()
            clip_embed_zeroed = embeds[1].cpu()
        else:
            if image.shape[1] != image.shape[2]:
                print("\033[33mINFO: the IPAdapter reference image is not a square, CLIPImageProcessor will resize and crop it at the center. If the main focus of the picture is not in the middle the result might not be what you are expecting.\033[0m")

            clip_embed = clip_vision.encode_image(image)
            neg_image = image_add_noise(image, noise) if noise > 0 else None
            
            if self.is_plus:
                clip_embed = clip_embed.penultimate_hidden_states
                if noise > 0:
                    clip_embed_zeroed = clip_vision.encode_image(neg_image).penultimate_hidden_states
                else:
                    clip_embed_zeroed = zeroed_hidden_states(clip_vision, image.shape[0])
            else:
                clip_embed = clip_embed.image_embeds
                if noise > 0:
                    clip_embed_zeroed = clip_vision.encode_image(neg_image).image_embeds
                else:
                    clip_embed_zeroed = torch.zeros_like(clip_embed)

        clip_embeddings_dim = clip_embed.shape[-1]

        self.ipadapter = IPAdapter(
            ipadapter,
            cross_attention_dim=cross_attention_dim,
            output_cross_attention_dim=output_cross_attention_dim,
            clip_embeddings_dim=clip_embeddings_dim,
            clip_extra_context_tokens=clip_extra_context_tokens,
            is_sdxl=self.is_sdxl,
            is_plus=self.is_plus,
            is_full=self.is_full,
        )
        
        self.ipadapter.to(self.device, dtype=self.dtype)

        image_prompt_embeds, uncond_image_prompt_embeds = self.ipadapter.get_image_embeds(clip_embed.to(self.device, self.dtype), clip_embed_zeroed.to(self.device, self.dtype))
        image_prompt_embeds = image_prompt_embeds.to(self.device, dtype=self.dtype)
        uncond_image_prompt_embeds = uncond_image_prompt_embeds.to(self.device, dtype=self.dtype)

        work_model = model.clone()

        if attn_mask is not None:
            attn_mask = attn_mask.to(self.device)

        sigma_start = model.model.model_sampling.percent_to_sigma(start_at)
        sigma_end = model.model.model_sampling.percent_to_sigma(end_at)

        patch_kwargs = {
            "number": 0,
            "weight": self.weight,
            "ipadapter": self.ipadapter,
            "device": self.device,
            "dtype": self.dtype,
            "cond": image_prompt_embeds,
            "uncond": uncond_image_prompt_embeds,
            "weight_type": weight_type,
            "mask": attn_mask,
            "sigma_start": sigma_start,
            "sigma_end": sigma_end,
            "unfold_batch": unfold_batch,
        }

        if not self.is_sdxl:
            for id in [1,2,4,5,7,8]: # id of input_blocks that have cross attention
                set_model_patch_replace(work_model, patch_kwargs, ("input", id))
                patch_kwargs["number"] += 1
            for id in [3,4,5,6,7,8,9,10,11]: # id of output_blocks that have cross attention
                set_model_patch_replace(work_model, patch_kwargs, ("output", id))
                patch_kwargs["number"] += 1
            set_model_patch_replace(work_model, patch_kwargs, ("middle", 0))
        else:
            for id in [4,5,7,8]: # id of input_blocks that have cross attention
                block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth
                for index in block_indices:
                    set_model_patch_replace(work_model, patch_kwargs, ("input", id, index))
                    patch_kwargs["number"] += 1
            for id in range(6): # id of output_blocks that have cross attention
                block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth
                for index in block_indices:
                    set_model_patch_replace(work_model, patch_kwargs, ("output", id, index))
                    patch_kwargs["number"] += 1
            for index in range(10):
                set_model_patch_replace(work_model, patch_kwargs, ("middle", 0, index))
                patch_kwargs["number"] += 1

        return (work_model, )

class PrepImageForClipVision:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "image": ("IMAGE",),
            "interpolation": (["LANCZOS", "BICUBIC", "HAMMING", "BILINEAR", "BOX", "NEAREST"],),
            "crop_position": (["top", "bottom", "left", "right", "center", "pad"],),
            "sharpening": ("FLOAT", {"default": 0.0, "min": 0, "max": 1, "step": 0.05}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "prep_image"

    CATEGORY = "ipadapter"

    def prep_image(self, image, interpolation="LANCZOS", crop_position="center", sharpening=0.0):
        _, oh, ow, _ = image.shape
        output = image.permute([0,3,1,2])

        if "pad" in crop_position:
            target_length = max(oh, ow)
            pad_l = (target_length - ow) // 2
            pad_r = (target_length - ow) - pad_l
            pad_t = (target_length - oh) // 2
            pad_b = (target_length - oh) - pad_t
            output = F.pad(output, (pad_l, pad_r, pad_t, pad_b), value=0, mode="constant")
        else:
            crop_size = min(oh, ow)
            x = (ow-crop_size) // 2
            y = (oh-crop_size) // 2
            if "top" in crop_position:
                y = 0
            elif "bottom" in crop_position:
                y = oh-crop_size
            elif "left" in crop_position:
                x = 0
            elif "right" in crop_position:
                x = ow-crop_size
            
            x2 = x+crop_size
            y2 = y+crop_size

            # crop
            output = output[:, :, y:y2, x:x2]

        # resize (apparently PIL resize is better than tourchvision interpolate)
        imgs = []
        for i in range(output.shape[0]):
            img = TT.ToPILImage()(output[i])
            img = img.resize((224,224), resample=Image.Resampling[interpolation])
            imgs.append(TT.ToTensor()(img))
        output = torch.stack(imgs, dim=0)
        
        if sharpening > 0:
            output = contrast_adaptive_sharpening(output, sharpening)
        
        output = output.permute([0,2,3,1])

        return (output,)

class IPAdapterEncoder:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "clip_vision": ("CLIP_VISION",),
            "image_1": ("IMAGE",),
            "ipadapter_plus": ("BOOLEAN", { "default": False }),
            "noise": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
            "weight_1": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }),
            },
            "optional": {
                "image_2": ("IMAGE",),
                "image_3": ("IMAGE",),
                "image_4": ("IMAGE",),
                "weight_2": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }),
                "weight_3": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }),
                "weight_4": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }),
            }
        }

    RETURN_TYPES = ("EMBEDS",)
    FUNCTION = "preprocess"
    CATEGORY = "ipadapter"

    def preprocess(self, clip_vision, image_1, ipadapter_plus, noise, weight_1, image_2=None, image_3=None, image_4=None, weight_2=1.0, weight_3=1.0, weight_4=1.0):
        weight_1 *= (0.1 + (weight_1 - 0.1))
        weight_1 = 1.19e-05 if weight_1 <= 1.19e-05 else weight_1
        weight_2 *= (0.1 + (weight_2 - 0.1))
        weight_2 = 1.19e-05 if weight_2 <= 1.19e-05 else weight_2
        weight_3 *= (0.1 + (weight_3 - 0.1))
        weight_3 = 1.19e-05 if weight_3 <= 1.19e-05 else weight_3
        weight_4 *= (0.1 + (weight_4 - 0.1))
        weight_5 = 1.19e-05 if weight_4 <= 1.19e-05 else weight_4

        image = image_1
        weight = [weight_1]*image_1.shape[0]
        
        if image_2 is not None:
            if image_1.shape[1:] != image_2.shape[1:]:
                image_2 = comfy.utils.common_upscale(image_2.movedim(-1,1), image.shape[2], image.shape[1], "bilinear", "center").movedim(1,-1)
            image = torch.cat((image, image_2), dim=0)
            weight += [weight_2]*image_2.shape[0]
        if image_3 is not None:
            if image.shape[1:] != image_3.shape[1:]:
                image_3 = comfy.utils.common_upscale(image_3.movedim(-1,1), image.shape[2], image.shape[1], "bilinear", "center").movedim(1,-1)
            image = torch.cat((image, image_3), dim=0)
            weight += [weight_3]*image_3.shape[0]
        if image_4 is not None:
            if image.shape[1:] != image_4.shape[1:]:
                image_4 = comfy.utils.common_upscale(image_4.movedim(-1,1), image.shape[2], image.shape[1], "bilinear", "center").movedim(1,-1)
            image = torch.cat((image, image_4), dim=0)
            weight += [weight_4]*image_4.shape[0]
        
        clip_embed = clip_vision.encode_image(image)
        neg_image = image_add_noise(image, noise) if noise > 0 else None
        
        if ipadapter_plus:
            clip_embed = clip_embed.penultimate_hidden_states
            if noise > 0:
                clip_embed_zeroed = clip_vision.encode_image(neg_image).penultimate_hidden_states
            else:
                clip_embed_zeroed = zeroed_hidden_states(clip_vision, image.shape[0])
        else:
            clip_embed = clip_embed.image_embeds
            if noise > 0:
                clip_embed_zeroed = clip_vision.encode_image(neg_image).image_embeds
            else:
                clip_embed_zeroed = torch.zeros_like(clip_embed)

        if any(e != 1.0 for e in weight):
            weight = torch.tensor(weight).unsqueeze(-1) if not ipadapter_plus else torch.tensor(weight).unsqueeze(-1).unsqueeze(-1)
            clip_embed = clip_embed * weight
        
        output = torch.stack((clip_embed, clip_embed_zeroed))

        return( output, )

class IPAdapterApplyEncoded(IPAdapterApply):
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "ipadapter": ("IPADAPTER", ),
                "embeds": ("EMBEDS",),
                "model": ("MODEL", ),
                "weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
                "weight_type": (["original", "linear", "channel penalty"], ),
                "start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
                "end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
                "unfold_batch": ("BOOLEAN", { "default": False }),
            },
            "optional": {
                "attn_mask": ("MASK",),
            }
        }

class IPAdapterSaveEmbeds:
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()

    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "embeds": ("EMBEDS",),
            "filename_prefix": ("STRING", {"default": "embeds/IPAdapter"})
            },
        }

    RETURN_TYPES = ()
    FUNCTION = "save"
    OUTPUT_NODE = True
    CATEGORY = "ipadapter"

    def save(self, embeds, filename_prefix):
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
        file = f"{filename}_{counter:05}_.ipadpt"
        file = os.path.join(full_output_folder, file)

        torch.save(embeds, file)
        return (None, )


class IPAdapterLoadEmbeds:
    @classmethod
    def INPUT_TYPES(s):
        input_dir = folder_paths.get_input_directory()
        files = [os.path.relpath(os.path.join(root, file), input_dir) for root, dirs, files in os.walk(input_dir) for file in files if file.endswith('.ipadpt')]
        return {"required": {"embeds": [sorted(files), ]}, }

    RETURN_TYPES = ("EMBEDS", )
    FUNCTION = "load"
    CATEGORY = "ipadapter"

    def load(self, embeds):
        path = folder_paths.get_annotated_filepath(embeds)
        output = torch.load(path).cpu()

        return (output, )


class IPAdapterBatchEmbeds:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "embed1": ("EMBEDS",),
            "embed2": ("EMBEDS",),
        }}

    RETURN_TYPES = ("EMBEDS",)
    FUNCTION = "batch"
    CATEGORY = "ipadapter"

    def batch(self, embed1, embed2):
        output = torch.cat((embed1, embed2), dim=1)
        return (output, )

NODE_CLASS_MAPPINGS = {
    "IPAdapterModelLoader": IPAdapterModelLoader,
    "IPAdapterApply": IPAdapterApply,
    "IPAdapterApplyEncoded": IPAdapterApplyEncoded,
    "PrepImageForClipVision": PrepImageForClipVision,
    "IPAdapterEncoder": IPAdapterEncoder,
    "IPAdapterSaveEmbeds": IPAdapterSaveEmbeds,
    "IPAdapterLoadEmbeds": IPAdapterLoadEmbeds,
    "IPAdapterBatchEmbeds": IPAdapterBatchEmbeds,
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "IPAdapterModelLoader": "Load IPAdapter Model",
    "IPAdapterApply": "Apply IPAdapter",
    "IPAdapterApplyEncoded": "Apply IPAdapter from Encoded",
    "PrepImageForClipVision": "Prepare Image For Clip Vision",
    "IPAdapterEncoder": "Encode IPAdapter Image",
    "IPAdapterSaveEmbeds": "Save IPAdapter Embeds",
    "IPAdapterLoadEmbeds": "Load IPAdapter Embeds",
    "IPAdapterBatchEmbeds": "IPAdapter Batch Embeds",
}