File size: 34,438 Bytes
baa8e90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 |
import torch
import contextlib
import os
import math
import comfy.utils
import comfy.model_management
from comfy.clip_vision import clip_preprocess
from comfy.ldm.modules.attention import optimized_attention
import folder_paths
from torch import nn
from PIL import Image
import torch.nn.functional as F
import torchvision.transforms as TT
from .resampler import Resampler
# set the models directory backward compatible
GLOBAL_MODELS_DIR = os.path.join(folder_paths.models_dir, "ipadapter")
MODELS_DIR = GLOBAL_MODELS_DIR if os.path.isdir(GLOBAL_MODELS_DIR) else os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
if "ipadapter" not in folder_paths.folder_names_and_paths:
folder_paths.folder_names_and_paths["ipadapter"] = ([MODELS_DIR], folder_paths.supported_pt_extensions)
else:
folder_paths.folder_names_and_paths["ipadapter"][1].update(folder_paths.supported_pt_extensions)
class MLPProjModel(torch.nn.Module):
"""SD model with image prompt"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
super().__init__()
self.proj = torch.nn.Sequential(
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
torch.nn.GELU(),
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
torch.nn.LayerNorm(cross_attention_dim)
)
def forward(self, image_embeds):
clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens
class ImageProjModel(nn.Module):
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
class To_KV(nn.Module):
def __init__(self, state_dict):
super().__init__()
self.to_kvs = nn.ModuleDict()
for key, value in state_dict.items():
self.to_kvs[key.replace(".weight", "").replace(".", "_")] = nn.Linear(value.shape[1], value.shape[0], bias=False)
self.to_kvs[key.replace(".weight", "").replace(".", "_")].weight.data = value
def set_model_patch_replace(model, patch_kwargs, key):
to = model.model_options["transformer_options"]
if "patches_replace" not in to:
to["patches_replace"] = {}
if "attn2" not in to["patches_replace"]:
to["patches_replace"]["attn2"] = {}
if key not in to["patches_replace"]["attn2"]:
patch = CrossAttentionPatch(**patch_kwargs)
to["patches_replace"]["attn2"][key] = patch
else:
to["patches_replace"]["attn2"][key].set_new_condition(**patch_kwargs)
def image_add_noise(image, noise):
image = image.permute([0,3,1,2])
torch.manual_seed(0) # use a fixed random for reproducible results
transforms = TT.Compose([
TT.CenterCrop(min(image.shape[2], image.shape[3])),
TT.Resize((224, 224), interpolation=TT.InterpolationMode.BICUBIC, antialias=True),
TT.ElasticTransform(alpha=75.0, sigma=noise*3.5), # shuffle the image
TT.RandomVerticalFlip(p=1.0), # flip the image to change the geometry even more
TT.RandomHorizontalFlip(p=1.0),
])
image = transforms(image.cpu())
image = image.permute([0,2,3,1])
image = image + ((0.25*(1-noise)+0.05) * torch.randn_like(image) ) # add further random noise
return image
def zeroed_hidden_states(clip_vision, batch_size):
image = torch.zeros([batch_size, 224, 224, 3])
comfy.model_management.load_model_gpu(clip_vision.patcher)
pixel_values = clip_preprocess(image.to(clip_vision.load_device))
if clip_vision.dtype != torch.float32:
precision_scope = torch.autocast
else:
precision_scope = lambda a, b: contextlib.nullcontext(a)
with precision_scope(comfy.model_management.get_autocast_device(clip_vision.load_device), torch.float32):
outputs = clip_vision.model(pixel_values, intermediate_output=-2)
# we only need the penultimate hidden states
outputs = outputs[1].to(comfy.model_management.intermediate_device())
return outputs
def min_(tensor_list):
# return the element-wise min of the tensor list.
x = torch.stack(tensor_list)
mn = x.min(axis=0)[0]
return torch.clamp(mn, min=0)
def max_(tensor_list):
# return the element-wise max of the tensor list.
x = torch.stack(tensor_list)
mx = x.max(axis=0)[0]
return torch.clamp(mx, max=1)
# From https://github.com/Jamy-L/Pytorch-Contrast-Adaptive-Sharpening/
def contrast_adaptive_sharpening(image, amount):
img = F.pad(image, pad=(1, 1, 1, 1)).cpu()
a = img[..., :-2, :-2]
b = img[..., :-2, 1:-1]
c = img[..., :-2, 2:]
d = img[..., 1:-1, :-2]
e = img[..., 1:-1, 1:-1]
f = img[..., 1:-1, 2:]
g = img[..., 2:, :-2]
h = img[..., 2:, 1:-1]
i = img[..., 2:, 2:]
# Computing contrast
cross = (b, d, e, f, h)
mn = min_(cross)
mx = max_(cross)
diag = (a, c, g, i)
mn2 = min_(diag)
mx2 = max_(diag)
mx = mx + mx2
mn = mn + mn2
# Computing local weight
inv_mx = torch.reciprocal(mx)
amp = inv_mx * torch.minimum(mn, (2 - mx))
# scaling
amp = torch.sqrt(amp)
w = - amp * (amount * (1/5 - 1/8) + 1/8)
div = torch.reciprocal(1 + 4*w)
output = ((b + d + f + h)*w + e) * div
output = output.clamp(0, 1)
output = torch.nan_to_num(output)
return (output)
class IPAdapter(nn.Module):
def __init__(self, ipadapter_model, cross_attention_dim=1024, output_cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4, is_sdxl=False, is_plus=False, is_full=False):
super().__init__()
self.clip_embeddings_dim = clip_embeddings_dim
self.cross_attention_dim = cross_attention_dim
self.output_cross_attention_dim = output_cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.is_sdxl = is_sdxl
self.is_full = is_full
self.image_proj_model = self.init_proj() if not is_plus else self.init_proj_plus()
self.image_proj_model.load_state_dict(ipadapter_model["image_proj"])
self.ip_layers = To_KV(ipadapter_model["ip_adapter"])
def init_proj(self):
image_proj_model = ImageProjModel(
cross_attention_dim=self.cross_attention_dim,
clip_embeddings_dim=self.clip_embeddings_dim,
clip_extra_context_tokens=self.clip_extra_context_tokens
)
return image_proj_model
def init_proj_plus(self):
if self.is_full:
image_proj_model = MLPProjModel(
cross_attention_dim=self.cross_attention_dim,
clip_embeddings_dim=self.clip_embeddings_dim
)
else:
image_proj_model = Resampler(
dim=self.cross_attention_dim,
depth=4,
dim_head=64,
heads=20 if self.is_sdxl else 12,
num_queries=self.clip_extra_context_tokens,
embedding_dim=self.clip_embeddings_dim,
output_dim=self.output_cross_attention_dim,
ff_mult=4
)
return image_proj_model
@torch.inference_mode()
def get_image_embeds(self, clip_embed, clip_embed_zeroed):
image_prompt_embeds = self.image_proj_model(clip_embed)
uncond_image_prompt_embeds = self.image_proj_model(clip_embed_zeroed)
return image_prompt_embeds, uncond_image_prompt_embeds
class CrossAttentionPatch:
# forward for patching
def __init__(self, weight, ipadapter, device, dtype, number, cond, uncond, weight_type, mask=None, sigma_start=0.0, sigma_end=1.0, unfold_batch=False):
self.weights = [weight]
self.ipadapters = [ipadapter]
self.conds = [cond]
self.unconds = [uncond]
self.device = 'cuda' if 'cuda' in device.type else 'cpu'
self.dtype = dtype if 'cuda' in self.device else torch.bfloat16
self.number = number
self.weight_type = [weight_type]
self.masks = [mask]
self.sigma_start = [sigma_start]
self.sigma_end = [sigma_end]
self.unfold_batch = [unfold_batch]
self.k_key = str(self.number*2+1) + "_to_k_ip"
self.v_key = str(self.number*2+1) + "_to_v_ip"
def set_new_condition(self, weight, ipadapter, device, dtype, number, cond, uncond, weight_type, mask=None, sigma_start=0.0, sigma_end=1.0, unfold_batch=False):
self.weights.append(weight)
self.ipadapters.append(ipadapter)
self.conds.append(cond)
self.unconds.append(uncond)
self.masks.append(mask)
self.device = 'cuda' if 'cuda' in device.type else 'cpu'
self.dtype = dtype if 'cuda' in self.device else torch.bfloat16
self.weight_type.append(weight_type)
self.sigma_start.append(sigma_start)
self.sigma_end.append(sigma_end)
self.unfold_batch.append(unfold_batch)
def __call__(self, n, context_attn2, value_attn2, extra_options):
org_dtype = n.dtype
cond_or_uncond = extra_options["cond_or_uncond"]
sigma = extra_options["sigmas"][0].item() if 'sigmas' in extra_options else 999999999.9
# extra options for AnimateDiff
ad_params = extra_options['ad_params'] if "ad_params" in extra_options else None
with torch.autocast(device_type=self.device, dtype=self.dtype):
q = n
k = context_attn2
v = value_attn2
b = q.shape[0]
qs = q.shape[1]
batch_prompt = b // len(cond_or_uncond)
out = optimized_attention(q, k, v, extra_options["n_heads"])
_, _, lh, lw = extra_options["original_shape"]
for weight, cond, uncond, ipadapter, mask, weight_type, sigma_start, sigma_end, unfold_batch in zip(self.weights, self.conds, self.unconds, self.ipadapters, self.masks, self.weight_type, self.sigma_start, self.sigma_end, self.unfold_batch):
if sigma > sigma_start or sigma < sigma_end:
continue
if unfold_batch and cond.shape[0] > 1:
# Check AnimateDiff context window
if ad_params is not None and ad_params["sub_idxs"] is not None:
# if images length matches or exceeds full_length get sub_idx images
if cond.shape[0] >= ad_params["full_length"]:
cond = torch.Tensor(cond[ad_params["sub_idxs"]])
uncond = torch.Tensor(uncond[ad_params["sub_idxs"]])
# otherwise, need to do more to get proper sub_idxs masks
else:
# check if images length matches full_length - if not, make it match
if cond.shape[0] < ad_params["full_length"]:
cond = torch.cat((cond, cond[-1:].repeat((ad_params["full_length"]-cond.shape[0], 1, 1))), dim=0)
uncond = torch.cat((uncond, uncond[-1:].repeat((ad_params["full_length"]-uncond.shape[0], 1, 1))), dim=0)
# if we have too many remove the excess (should not happen, but just in case)
if cond.shape[0] > ad_params["full_length"]:
cond = cond[:ad_params["full_length"]]
uncond = uncond[:ad_params["full_length"]]
cond = cond[ad_params["sub_idxs"]]
uncond = uncond[ad_params["sub_idxs"]]
# if we don't have enough reference images repeat the last one until we reach the right size
if cond.shape[0] < batch_prompt:
cond = torch.cat((cond, cond[-1:].repeat((batch_prompt-cond.shape[0], 1, 1))), dim=0)
uncond = torch.cat((uncond, uncond[-1:].repeat((batch_prompt-uncond.shape[0], 1, 1))), dim=0)
# if we have too many remove the exceeding
elif cond.shape[0] > batch_prompt:
cond = cond[:batch_prompt]
uncond = uncond[:batch_prompt]
k_cond = ipadapter.ip_layers.to_kvs[self.k_key](cond)
k_uncond = ipadapter.ip_layers.to_kvs[self.k_key](uncond)
v_cond = ipadapter.ip_layers.to_kvs[self.v_key](cond)
v_uncond = ipadapter.ip_layers.to_kvs[self.v_key](uncond)
else:
k_cond = ipadapter.ip_layers.to_kvs[self.k_key](cond).repeat(batch_prompt, 1, 1)
k_uncond = ipadapter.ip_layers.to_kvs[self.k_key](uncond).repeat(batch_prompt, 1, 1)
v_cond = ipadapter.ip_layers.to_kvs[self.v_key](cond).repeat(batch_prompt, 1, 1)
v_uncond = ipadapter.ip_layers.to_kvs[self.v_key](uncond).repeat(batch_prompt, 1, 1)
if weight_type.startswith("linear"):
ip_k = torch.cat([(k_cond, k_uncond)[i] for i in cond_or_uncond], dim=0) * weight
ip_v = torch.cat([(v_cond, v_uncond)[i] for i in cond_or_uncond], dim=0) * weight
else:
ip_k = torch.cat([(k_cond, k_uncond)[i] for i in cond_or_uncond], dim=0)
ip_v = torch.cat([(v_cond, v_uncond)[i] for i in cond_or_uncond], dim=0)
if weight_type.startswith("channel"):
# code by Lvmin Zhang at Stanford University as also seen on Fooocus IPAdapter implementation
# please read licensing notes https://github.com/lllyasviel/Fooocus/blob/main/fooocus_extras/ip_adapter.py#L225
ip_v_mean = torch.mean(ip_v, dim=1, keepdim=True)
ip_v_offset = ip_v - ip_v_mean
_, _, C = ip_k.shape
channel_penalty = float(C) / 1280.0
W = weight * channel_penalty
ip_k = ip_k * W
ip_v = ip_v_offset + ip_v_mean * W
out_ip = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"])
if weight_type.startswith("original"):
out_ip = out_ip * weight
if mask is not None:
# TODO: needs checking
mask_h = max(1, round(lh / math.sqrt(lh * lw / qs)))
mask_w = qs // mask_h
# check if using AnimateDiff and sliding context window
if (mask.shape[0] > 1 and ad_params is not None and ad_params["sub_idxs"] is not None):
# if mask length matches or exceeds full_length, just get sub_idx masks, resize, and continue
if mask.shape[0] >= ad_params["full_length"]:
mask_downsample = torch.Tensor(mask[ad_params["sub_idxs"]])
mask_downsample = F.interpolate(mask_downsample.unsqueeze(1), size=(mask_h, mask_w), mode="bicubic").squeeze(1)
# otherwise, need to do more to get proper sub_idxs masks
else:
# resize to needed attention size (to save on memory)
mask_downsample = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bicubic").squeeze(1)
# check if mask length matches full_length - if not, make it match
if mask_downsample.shape[0] < ad_params["full_length"]:
mask_downsample = torch.cat((mask_downsample, mask_downsample[-1:].repeat((ad_params["full_length"]-mask_downsample.shape[0], 1, 1))), dim=0)
# if we have too many remove the excess (should not happen, but just in case)
if mask_downsample.shape[0] > ad_params["full_length"]:
mask_downsample = mask_downsample[:ad_params["full_length"]]
# now, select sub_idxs masks
mask_downsample = mask_downsample[ad_params["sub_idxs"]]
# otherwise, perform usual mask interpolation
else:
mask_downsample = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bicubic").squeeze(1)
# if we don't have enough masks repeat the last one until we reach the right size
if mask_downsample.shape[0] < batch_prompt:
mask_downsample = torch.cat((mask_downsample, mask_downsample[-1:, :, :].repeat((batch_prompt-mask_downsample.shape[0], 1, 1))), dim=0)
# if we have too many remove the exceeding
elif mask_downsample.shape[0] > batch_prompt:
mask_downsample = mask_downsample[:batch_prompt, :, :]
# repeat the masks
mask_downsample = mask_downsample.repeat(len(cond_or_uncond), 1, 1)
mask_downsample = mask_downsample.view(mask_downsample.shape[0], -1, 1).repeat(1, 1, out.shape[2])
out_ip = out_ip * mask_downsample
out = out + out_ip
return out.to(dtype=org_dtype)
class IPAdapterModelLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "ipadapter_file": (folder_paths.get_filename_list("ipadapter"), )}}
RETURN_TYPES = ("IPADAPTER",)
FUNCTION = "load_ipadapter_model"
CATEGORY = "ipadapter"
def load_ipadapter_model(self, ipadapter_file):
ckpt_path = folder_paths.get_full_path("ipadapter", ipadapter_file)
model = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
if ckpt_path.lower().endswith(".safetensors"):
st_model = {"image_proj": {}, "ip_adapter": {}}
for key in model.keys():
if key.startswith("image_proj."):
st_model["image_proj"][key.replace("image_proj.", "")] = model[key]
elif key.startswith("ip_adapter."):
st_model["ip_adapter"][key.replace("ip_adapter.", "")] = model[key]
model = st_model
if not "ip_adapter" in model.keys() or not model["ip_adapter"]:
raise Exception("invalid IPAdapter model {}".format(ckpt_path))
return (model,)
class IPAdapterApply:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ipadapter": ("IPADAPTER", ),
"clip_vision": ("CLIP_VISION",),
"image": ("IMAGE",),
"model": ("MODEL", ),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
"noise": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
"weight_type": (["original", "linear", "channel penalty"], ),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"unfold_batch": ("BOOLEAN", { "default": False }),
},
"optional": {
"attn_mask": ("MASK",),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply_ipadapter"
CATEGORY = "ipadapter"
def apply_ipadapter(self, ipadapter, model, weight, clip_vision=None, image=None, weight_type="original", noise=None, embeds=None, attn_mask=None, start_at=0.0, end_at=1.0, unfold_batch=False):
self.dtype = model.model.diffusion_model.dtype
self.device = comfy.model_management.get_torch_device()
self.weight = weight
self.is_full = "proj.0.weight" in ipadapter["image_proj"]
self.is_plus = self.is_full or "latents" in ipadapter["image_proj"]
output_cross_attention_dim = ipadapter["ip_adapter"]["1.to_k_ip.weight"].shape[1]
self.is_sdxl = output_cross_attention_dim == 2048
cross_attention_dim = 1280 if self.is_plus and self.is_sdxl else output_cross_attention_dim
clip_extra_context_tokens = 16 if self.is_plus else 4
if embeds is not None:
embeds = torch.unbind(embeds)
clip_embed = embeds[0].cpu()
clip_embed_zeroed = embeds[1].cpu()
else:
if image.shape[1] != image.shape[2]:
print("\033[33mINFO: the IPAdapter reference image is not a square, CLIPImageProcessor will resize and crop it at the center. If the main focus of the picture is not in the middle the result might not be what you are expecting.\033[0m")
clip_embed = clip_vision.encode_image(image)
neg_image = image_add_noise(image, noise) if noise > 0 else None
if self.is_plus:
clip_embed = clip_embed.penultimate_hidden_states
if noise > 0:
clip_embed_zeroed = clip_vision.encode_image(neg_image).penultimate_hidden_states
else:
clip_embed_zeroed = zeroed_hidden_states(clip_vision, image.shape[0])
else:
clip_embed = clip_embed.image_embeds
if noise > 0:
clip_embed_zeroed = clip_vision.encode_image(neg_image).image_embeds
else:
clip_embed_zeroed = torch.zeros_like(clip_embed)
clip_embeddings_dim = clip_embed.shape[-1]
self.ipadapter = IPAdapter(
ipadapter,
cross_attention_dim=cross_attention_dim,
output_cross_attention_dim=output_cross_attention_dim,
clip_embeddings_dim=clip_embeddings_dim,
clip_extra_context_tokens=clip_extra_context_tokens,
is_sdxl=self.is_sdxl,
is_plus=self.is_plus,
is_full=self.is_full,
)
self.ipadapter.to(self.device, dtype=self.dtype)
image_prompt_embeds, uncond_image_prompt_embeds = self.ipadapter.get_image_embeds(clip_embed.to(self.device, self.dtype), clip_embed_zeroed.to(self.device, self.dtype))
image_prompt_embeds = image_prompt_embeds.to(self.device, dtype=self.dtype)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.to(self.device, dtype=self.dtype)
work_model = model.clone()
if attn_mask is not None:
attn_mask = attn_mask.to(self.device)
sigma_start = model.model.model_sampling.percent_to_sigma(start_at)
sigma_end = model.model.model_sampling.percent_to_sigma(end_at)
patch_kwargs = {
"number": 0,
"weight": self.weight,
"ipadapter": self.ipadapter,
"device": self.device,
"dtype": self.dtype,
"cond": image_prompt_embeds,
"uncond": uncond_image_prompt_embeds,
"weight_type": weight_type,
"mask": attn_mask,
"sigma_start": sigma_start,
"sigma_end": sigma_end,
"unfold_batch": unfold_batch,
}
if not self.is_sdxl:
for id in [1,2,4,5,7,8]: # id of input_blocks that have cross attention
set_model_patch_replace(work_model, patch_kwargs, ("input", id))
patch_kwargs["number"] += 1
for id in [3,4,5,6,7,8,9,10,11]: # id of output_blocks that have cross attention
set_model_patch_replace(work_model, patch_kwargs, ("output", id))
patch_kwargs["number"] += 1
set_model_patch_replace(work_model, patch_kwargs, ("middle", 0))
else:
for id in [4,5,7,8]: # id of input_blocks that have cross attention
block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth
for index in block_indices:
set_model_patch_replace(work_model, patch_kwargs, ("input", id, index))
patch_kwargs["number"] += 1
for id in range(6): # id of output_blocks that have cross attention
block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth
for index in block_indices:
set_model_patch_replace(work_model, patch_kwargs, ("output", id, index))
patch_kwargs["number"] += 1
for index in range(10):
set_model_patch_replace(work_model, patch_kwargs, ("middle", 0, index))
patch_kwargs["number"] += 1
return (work_model, )
class PrepImageForClipVision:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE",),
"interpolation": (["LANCZOS", "BICUBIC", "HAMMING", "BILINEAR", "BOX", "NEAREST"],),
"crop_position": (["top", "bottom", "left", "right", "center", "pad"],),
"sharpening": ("FLOAT", {"default": 0.0, "min": 0, "max": 1, "step": 0.05}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "prep_image"
CATEGORY = "ipadapter"
def prep_image(self, image, interpolation="LANCZOS", crop_position="center", sharpening=0.0):
_, oh, ow, _ = image.shape
output = image.permute([0,3,1,2])
if "pad" in crop_position:
target_length = max(oh, ow)
pad_l = (target_length - ow) // 2
pad_r = (target_length - ow) - pad_l
pad_t = (target_length - oh) // 2
pad_b = (target_length - oh) - pad_t
output = F.pad(output, (pad_l, pad_r, pad_t, pad_b), value=0, mode="constant")
else:
crop_size = min(oh, ow)
x = (ow-crop_size) // 2
y = (oh-crop_size) // 2
if "top" in crop_position:
y = 0
elif "bottom" in crop_position:
y = oh-crop_size
elif "left" in crop_position:
x = 0
elif "right" in crop_position:
x = ow-crop_size
x2 = x+crop_size
y2 = y+crop_size
# crop
output = output[:, :, y:y2, x:x2]
# resize (apparently PIL resize is better than tourchvision interpolate)
imgs = []
for i in range(output.shape[0]):
img = TT.ToPILImage()(output[i])
img = img.resize((224,224), resample=Image.Resampling[interpolation])
imgs.append(TT.ToTensor()(img))
output = torch.stack(imgs, dim=0)
if sharpening > 0:
output = contrast_adaptive_sharpening(output, sharpening)
output = output.permute([0,2,3,1])
return (output,)
class IPAdapterEncoder:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip_vision": ("CLIP_VISION",),
"image_1": ("IMAGE",),
"ipadapter_plus": ("BOOLEAN", { "default": False }),
"noise": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
"weight_1": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }),
},
"optional": {
"image_2": ("IMAGE",),
"image_3": ("IMAGE",),
"image_4": ("IMAGE",),
"weight_2": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }),
"weight_3": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }),
"weight_4": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }),
}
}
RETURN_TYPES = ("EMBEDS",)
FUNCTION = "preprocess"
CATEGORY = "ipadapter"
def preprocess(self, clip_vision, image_1, ipadapter_plus, noise, weight_1, image_2=None, image_3=None, image_4=None, weight_2=1.0, weight_3=1.0, weight_4=1.0):
weight_1 *= (0.1 + (weight_1 - 0.1))
weight_1 = 1.19e-05 if weight_1 <= 1.19e-05 else weight_1
weight_2 *= (0.1 + (weight_2 - 0.1))
weight_2 = 1.19e-05 if weight_2 <= 1.19e-05 else weight_2
weight_3 *= (0.1 + (weight_3 - 0.1))
weight_3 = 1.19e-05 if weight_3 <= 1.19e-05 else weight_3
weight_4 *= (0.1 + (weight_4 - 0.1))
weight_5 = 1.19e-05 if weight_4 <= 1.19e-05 else weight_4
image = image_1
weight = [weight_1]*image_1.shape[0]
if image_2 is not None:
if image_1.shape[1:] != image_2.shape[1:]:
image_2 = comfy.utils.common_upscale(image_2.movedim(-1,1), image.shape[2], image.shape[1], "bilinear", "center").movedim(1,-1)
image = torch.cat((image, image_2), dim=0)
weight += [weight_2]*image_2.shape[0]
if image_3 is not None:
if image.shape[1:] != image_3.shape[1:]:
image_3 = comfy.utils.common_upscale(image_3.movedim(-1,1), image.shape[2], image.shape[1], "bilinear", "center").movedim(1,-1)
image = torch.cat((image, image_3), dim=0)
weight += [weight_3]*image_3.shape[0]
if image_4 is not None:
if image.shape[1:] != image_4.shape[1:]:
image_4 = comfy.utils.common_upscale(image_4.movedim(-1,1), image.shape[2], image.shape[1], "bilinear", "center").movedim(1,-1)
image = torch.cat((image, image_4), dim=0)
weight += [weight_4]*image_4.shape[0]
clip_embed = clip_vision.encode_image(image)
neg_image = image_add_noise(image, noise) if noise > 0 else None
if ipadapter_plus:
clip_embed = clip_embed.penultimate_hidden_states
if noise > 0:
clip_embed_zeroed = clip_vision.encode_image(neg_image).penultimate_hidden_states
else:
clip_embed_zeroed = zeroed_hidden_states(clip_vision, image.shape[0])
else:
clip_embed = clip_embed.image_embeds
if noise > 0:
clip_embed_zeroed = clip_vision.encode_image(neg_image).image_embeds
else:
clip_embed_zeroed = torch.zeros_like(clip_embed)
if any(e != 1.0 for e in weight):
weight = torch.tensor(weight).unsqueeze(-1) if not ipadapter_plus else torch.tensor(weight).unsqueeze(-1).unsqueeze(-1)
clip_embed = clip_embed * weight
output = torch.stack((clip_embed, clip_embed_zeroed))
return( output, )
class IPAdapterApplyEncoded(IPAdapterApply):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ipadapter": ("IPADAPTER", ),
"embeds": ("EMBEDS",),
"model": ("MODEL", ),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
"weight_type": (["original", "linear", "channel penalty"], ),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"unfold_batch": ("BOOLEAN", { "default": False }),
},
"optional": {
"attn_mask": ("MASK",),
}
}
class IPAdapterSaveEmbeds:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
@classmethod
def INPUT_TYPES(s):
return {"required": {
"embeds": ("EMBEDS",),
"filename_prefix": ("STRING", {"default": "embeds/IPAdapter"})
},
}
RETURN_TYPES = ()
FUNCTION = "save"
OUTPUT_NODE = True
CATEGORY = "ipadapter"
def save(self, embeds, filename_prefix):
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
file = f"{filename}_{counter:05}_.ipadpt"
file = os.path.join(full_output_folder, file)
torch.save(embeds, file)
return (None, )
class IPAdapterLoadEmbeds:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [os.path.relpath(os.path.join(root, file), input_dir) for root, dirs, files in os.walk(input_dir) for file in files if file.endswith('.ipadpt')]
return {"required": {"embeds": [sorted(files), ]}, }
RETURN_TYPES = ("EMBEDS", )
FUNCTION = "load"
CATEGORY = "ipadapter"
def load(self, embeds):
path = folder_paths.get_annotated_filepath(embeds)
output = torch.load(path).cpu()
return (output, )
class IPAdapterBatchEmbeds:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"embed1": ("EMBEDS",),
"embed2": ("EMBEDS",),
}}
RETURN_TYPES = ("EMBEDS",)
FUNCTION = "batch"
CATEGORY = "ipadapter"
def batch(self, embed1, embed2):
output = torch.cat((embed1, embed2), dim=1)
return (output, )
NODE_CLASS_MAPPINGS = {
"IPAdapterModelLoader": IPAdapterModelLoader,
"IPAdapterApply": IPAdapterApply,
"IPAdapterApplyEncoded": IPAdapterApplyEncoded,
"PrepImageForClipVision": PrepImageForClipVision,
"IPAdapterEncoder": IPAdapterEncoder,
"IPAdapterSaveEmbeds": IPAdapterSaveEmbeds,
"IPAdapterLoadEmbeds": IPAdapterLoadEmbeds,
"IPAdapterBatchEmbeds": IPAdapterBatchEmbeds,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"IPAdapterModelLoader": "Load IPAdapter Model",
"IPAdapterApply": "Apply IPAdapter",
"IPAdapterApplyEncoded": "Apply IPAdapter from Encoded",
"PrepImageForClipVision": "Prepare Image For Clip Vision",
"IPAdapterEncoder": "Encode IPAdapter Image",
"IPAdapterSaveEmbeds": "Save IPAdapter Embeds",
"IPAdapterLoadEmbeds": "Load IPAdapter Embeds",
"IPAdapterBatchEmbeds": "IPAdapter Batch Embeds",
}
|