File size: 1,944 Bytes
baa8e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch

class ReferenceOnlySimple:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "reference": ("LATENT",),
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})
                              }}

    RETURN_TYPES = ("MODEL", "LATENT")
    FUNCTION = "reference_only"

    CATEGORY = "custom_node_experiments"

    def reference_only(self, model, reference, batch_size):
        model_reference = model.clone()
        size_latent = list(reference["samples"].shape)
        size_latent[0] = batch_size
        latent = {}
        latent["samples"] = torch.zeros(size_latent)

        batch = latent["samples"].shape[0] + reference["samples"].shape[0]
        def reference_apply(q, k, v, extra_options):
            k = k.clone().repeat(1, 2, 1)
            offset = 0
            if q.shape[0] > batch:
                offset = batch

            for o in range(0, q.shape[0], batch):
                for x in range(1, batch):
                    k[x + o, q.shape[1]:] = q[o,:]

            return q, k, k

        model_reference.set_model_attn1_patch(reference_apply)
        out_latent = torch.cat((reference["samples"], latent["samples"]))
        if "noise_mask" in latent:
            mask = latent["noise_mask"]
        else:
            mask = torch.ones((64,64), dtype=torch.float32, device="cpu")

        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        if mask.shape[0] < latent["samples"].shape[0]:
            print(latent["samples"].shape, mask.shape)
            mask = mask.repeat(latent["samples"].shape[0], 1, 1)

        out_mask = torch.zeros((1,mask.shape[1],mask.shape[2]), dtype=torch.float32, device="cpu")
        return (model_reference, {"samples": out_latent, "noise_mask": torch.cat((out_mask, mask))})

NODE_CLASS_MAPPINGS = {
    "ReferenceOnlySimple": ReferenceOnlySimple,
}