File size: 6,837 Bytes
baa8e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import torch
from packaging import version

from . import devices
from .sd_hijack_utils import CondFunc
from torch.nn.functional import silu
import comfy
from comfy import ldm
import contextlib

class TorchHijackForUnet:
    """
    This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
    this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
    """

    def __getattr__(self, item):
        if item == 'cat':
            return self.cat

        if hasattr(torch, item):
            return getattr(torch, item)

        raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")

    def cat(self, tensors, *args, **kwargs):
        if len(tensors) == 2:
            a, b = tensors
            if a.shape[-2:] != b.shape[-2:]:
                a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")

            tensors = (a, b)

        return torch.cat(tensors, *args, **kwargs)

th = TorchHijackForUnet()

from . import sd_hijack_optimizations
from comfy.model_base import BaseModel
from functools import wraps
sdp_no_mem = sd_hijack_optimizations.SdOptimizationSdpNoMem()
BaseModel.apply_model_orig = BaseModel.apply_model

# @contextmanager
class ApplyOptimizationsContext:
    def __init__(self):
        self.nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
        self.th = ldm.modules.diffusionmodules.openaimodel.th
        ldm.modules.diffusionmodules.model.nonlinearity = silu
        ldm.modules.diffusionmodules.openaimodel.th = th
        sdp_no_mem.apply()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        ldm.modules.diffusionmodules.model.nonlinearity = self.nonlinearity
        ldm.modules.diffusionmodules.openaimodel.th = self.th
        sd_hijack_optimizations.undo()



def ApplyOptimizationsContext3(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        with ApplyOptimizationsContext():
            return func(*args, **kwargs)
    return wrapper

precision_scope_null = lambda a, dtype=None: contextlib.nullcontext(a)

# def apply_model(orig_func, self, x_noisy, t, c_concat=None, c_crossattn=None, c_adm=None, control=None, transformer_options={}, *args, **kwargs):
def apply_model(orig_func, self, *args, **kwargs):
    transformer_options = kwargs['transformer_options'] if 'transformer_options' in kwargs else {}
    c_crossattn = kwargs['c_crossattn'] if 'c_crossattn' in kwargs else args[3]
    x_noisy = kwargs['x_noisy'] if 'x_noisy' in kwargs else args[0]
    if not transformer_options.get('from_smZ', False):
        return self.apply_model_orig(*args, **kwargs)

    cond=c_crossattn
    if isinstance(cond, dict):
        for y in cond.keys():
            if isinstance(cond[y], list):
                cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]]
            else:
                cond[y] = cond[y].to(devices.dtype_unet) if isinstance(cond[y], torch.Tensor) else cond[y]

    if x_noisy.dtype != torch.float32:
        precision_scope = torch.autocast
    else:
        precision_scope = precision_scope_null

    with precision_scope(comfy.model_management.get_autocast_device(x_noisy.device), dtype=x_noisy.dtype): # , torch.float32):
    # with devices.autocast():
        out = orig_func(self, *args, **kwargs).float()
    return out

class GELUHijack(torch.nn.GELU, torch.nn.Module):
    def __init__(self, *args, **kwargs):
        torch.nn.GELU.__init__(self, *args, **kwargs)
    def forward(self, x):
        if devices.unet_needs_upcast:
            return torch.nn.GELU.forward(self.float(), x.float()).to(devices.dtype_unet)
        else:
            return torch.nn.GELU.forward(self, x)

ddpm_edit_hijack = None
def hijack_ddpm_edit():
    global ddpm_edit_hijack
    if not ddpm_edit_hijack:
        CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
        CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
        ddpm_edit_hijack = CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)


unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
# CondFunc('comfy.model_base.BaseModel.apply_model', apply_model, unet_needs_upcast)
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
# CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
# if version.parse(torch.__version__) <= version.parse("1.13.2") or torch.cuda.is_available():
#     CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast)
#     CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast)
#     try:
#         CondFunc('open_clip.transformer.ResidualAttentionBlock.__init__', lambda orig_func, *args, **kwargs: kwargs.update({'act_layer': GELUHijack}) and False or orig_func(*args, **kwargs), lambda _, *args, **kwargs: kwargs.get('act_layer') is None or kwargs['act_layer'] == torch.nn.GELU)
#     except:
#         CondFunc('comfy.t2i_adapter.adapter.ResidualAttentionBlock.__init__', lambda orig_func, *args, **kwargs: kwargs.update({'act_layer': GELUHijack}) and False or orig_func(*args, **kwargs), lambda _, *args, **kwargs: kwargs.get('act_layer') is None or kwargs['act_layer'] == torch.nn.GELU)
first_stage_cond = lambda _, self, *args, **kwargs: devices.unet_needs_upcast and self.model.diffusion_model.dtype == torch.float16
first_stage_sub = lambda orig_func, self, x, **kwargs: orig_func(self, x.to(devices.dtype_vae), **kwargs)
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond)

# CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model, unet_needs_upcast)
# CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)