File size: 48,727 Bytes
baa8e90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 |
from __future__ import annotations
import comfy
import torch
from typing import List, Tuple
from functools import partial
from .modules import prompt_parser, shared, devices
from .modules.shared import opts
from .modules.sd_samplers_cfg_denoiser import CFGDenoiser
from .modules.sd_hijack_clip import FrozenCLIPEmbedderForSDXLWithCustomWords
from .modules.sd_hijack_open_clip import FrozenOpenCLIPEmbedder2WithCustomWords
from .modules.textual_inversion.textual_inversion import Embedding
import comfy.sdxl_clip
import comfy.sd1_clip
import comfy.sample
from comfy.sd1_clip import SD1Tokenizer, unescape_important, escape_important, token_weights, expand_directory_list
from nodes import CLIPTextEncode
from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
from comfy import model_management
import inspect
from textwrap import dedent, indent
import functools
import tempfile
import importlib
import sys
import os
import re
import contextlib
import itertools
import binascii
try:
from comfy_extras.nodes_clip_sdxl import CLIPTextEncodeSDXL, CLIPTextEncodeSDXLRefiner
except Exception as err:
print(f"[smZNodes]: Your ComfyUI version is outdated. Please update to the latest version. ({err})")
class CLIPTextEncodeSDXL(CLIPTextEncode): ...
class CLIPTextEncodeSDXLRefiner(CLIPTextEncode): ...
def get_learned_conditioning(self, c):
if self.cond_stage_forward is None:
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
c = self.cond_stage_model.encode(c)
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()
else:
c = self.cond_stage_model(c)
else:
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
return c
class PopulateVars:
def populate_self_variables(self, from_):
super_attrs = vars(from_)
self_attrs = vars(self)
self_attrs.update(super_attrs)
should_use_fp16_signature = inspect.signature(comfy.model_management.should_use_fp16)
class ClipTextEncoderCustom:
def _forward(self: comfy.sd1_clip.SD1ClipModel, tokens):
def set_dtype_compat(dtype, newv = False):
dtype_num = lambda d : int(re.sub(r'.*?(\d+)', r'\1', repr(d)))
_p = should_use_fp16_signature.parameters
# newer versions of ComfyUI upcasts the transformer embeddings, which is technically correct
# when it's a newer version, we want to downcast it to torch.float16, so set newv=True
# newv = 'device' in _p and 'prioritize_performance' in _p # comment this to have default comfy behaviour
if dtype_num(dtype) >= 32:
newv = False
if not newv: return
dtype = devices.dtype if dtype != devices.dtype else dtype
# self.transformer.text_model.embeddings.position_embedding.to(dtype)
# self.transformer.text_model.embeddings.token_embedding.to(dtype)
inner_model = getattr(self.transformer, self.inner_name, None)
if inner_model is not None and hasattr(inner_model, "embeddings"):
inner_model.embeddings.to(dtype)
else:
self.transformer.set_input_embeddings(self.transformer.get_input_embeddings().to(dtype))
def reset_dtype_compat():
# token_embedding_dtype = position_embedding_dtype = torch.float32
# self.transformer.text_model.embeddings.token_embedding.to(token_embedding_dtype)
# self.transformer.text_model.embeddings.position_embedding.to(position_embedding_dtype)
inner_model = getattr(self.transformer, self.inner_name, None)
if inner_model is not None and hasattr(inner_model, "embeddings"):
inner_model.embeddings.to(torch.float32)
else:
self.transformer.set_input_embeddings(self.transformer.get_input_embeddings().to(torch.float32))
enable_compat = False
if enable_compat: set_dtype_compat(torch.float16, enable_compat)
backup_embeds = self.transformer.get_input_embeddings()
device = backup_embeds.weight.device
tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
tokens = torch.LongTensor(tokens).to(device)
# dtype=backup_embeds.weight.dtype
if hasattr(self.transformer, 'dtype'):
dtype = self.transformer.dtype
else:
dtype = getattr(self.transformer, self.inner_name, self.transformer.text_model).final_layer_norm.weight.dtype
if dtype != torch.float32:
precision_scope = torch.autocast
else:
precision_scope = lambda a, dtype=None: contextlib.nullcontext(a)
with precision_scope(model_management.get_autocast_device(device), dtype=dtype if enable_compat else torch.float32):
attention_mask = None
if self.enable_attention_masks:
attention_mask = torch.zeros_like(tokens)
max_token = self.transformer.get_input_embeddings().weight.shape[0] - 1
for x in range(attention_mask.shape[0]):
for y in range(attention_mask.shape[1]):
attention_mask[x, y] = 1
if tokens[x, y] == max_token:
break
outputs = self.transformer(tokens, attention_mask, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state)
self.transformer.set_input_embeddings(backup_embeds)
if self.layer == "last":
z = outputs[0]
else:
z = outputs[1]
if outputs[2] is not None:
pooled_output = outputs[2].float()
else:
pooled_output = None
if enable_compat: reset_dtype_compat()
if self.text_projection is not None and pooled_output is not None:
pooled_output = pooled_output.float().to(self.text_projection.device) @ self.text_projection.float()
return z.float(), pooled_output
def encode_with_transformers_comfy_(self, tokens: List[List[int]], return_pooled=False):
tokens_orig = tokens
try:
if isinstance(tokens, torch.Tensor):
tokens = tokens.tolist()
z, pooled = ClipTextEncoderCustom._forward(self.wrapped, tokens) # self.wrapped.encode(tokens)
except Exception as e:
z, pooled = ClipTextEncoderCustom._forward(self.wrapped, tokens_orig)
# z = self.encode_with_transformers__(tokens_bak)
if z.device != devices.device:
z = z.to(device=devices.device)
# if z.dtype != devices.dtype:
# z = z.to(dtype=devices.dtype)
# if pooled.dtype != devices.dtype:
# pooled = pooled.to(dtype=devices.dtype)
z.pooled = pooled
return (z, pooled) if return_pooled else z
def encode_with_transformers_comfy(self, tokens: List[List[int]], return_pooled=False) -> Tuple[torch.Tensor, torch.Tensor]:
'''
This function is different from `clip.cond_stage_model.encode_token_weights()`
in that the tokens are `List[List[int]]`, not including the weights.
Originally from `sd1_clip.py`: `encode()` -> `forward()`
'''
tokens_orig = tokens
try:
if isinstance(tokens, torch.Tensor):
tokens = tokens.tolist()
z, pooled = self.wrapped(tokens) # self.wrapped.encode(tokens)
except Exception as e:
z, pooled = self.wrapped(tokens_orig)
# z = self.encode_with_transformers__(tokens_bak)
if z.device != devices.device:
z = z.to(device=devices.device)
# if z.dtype != devices.dtype:
# z = z.to(dtype=devices.dtype)
# if pooled.dtype != devices.dtype:
# pooled = pooled.to(dtype=devices.dtype)
z.pooled = pooled
return (z, pooled) if return_pooled else z
class FrozenOpenCLIPEmbedder2WithCustomWordsCustom(FrozenOpenCLIPEmbedder2WithCustomWords, ClipTextEncoderCustom, PopulateVars):
def __init__(self, wrapped: comfy.sdxl_clip.SDXLClipG, hijack):
self.populate_self_variables(wrapped.tokenizer_parent)
super().__init__(wrapped, hijack)
self.id_start = self.wrapped.tokenizer.bos_token_id
self.id_end = self.wrapped.tokenizer.eos_token_id
self.id_pad = 0
# Below is safe to do since ComfyUI uses the same CLIP model
# for Open Clip instead of an actual Open Clip model?
self.token_mults = {}
vocab = self.tokenizer.get_vocab()
self.comma_token = vocab.get(',</w>', None)
tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k]
for text, ident in tokens_with_parens:
mult = 1.0
for c in text:
if c == '[':
mult /= 1.1
if c == ']':
mult *= 1.1
if c == '(':
mult *= 1.1
if c == ')':
mult /= 1.1
if mult != 1.0:
self.token_mults[ident] = mult
def tokenize_line(self, line):
line = parse_and_register_embeddings(self, line)
return super().tokenize_line(line)
def encode(self, tokens):
return self.encode_with_transformers(tokens, True)
def encode_with_transformers(self, tokens, return_pooled=False):
return self.encode_with_transformers_comfy_(tokens, return_pooled)
def encode_token_weights(self, tokens):
pass
def tokenize(self, texts):
# assert not opts.use_old_emphasis_implementation, 'Old emphasis implementation not supported for Open Clip'
tokenized = [self.tokenizer(text)["input_ids"][1:-1] for text in texts]
return tokenized
class FrozenCLIPEmbedderWithCustomWordsCustom(FrozenCLIPEmbedderForSDXLWithCustomWords, ClipTextEncoderCustom, PopulateVars):
'''
Custom class that also inherits a tokenizer to have the `_try_get_embedding()` method.
'''
def __init__(self, wrapped: comfy.sd1_clip.SD1ClipModel, hijack):
self.populate_self_variables(wrapped.tokenizer_parent) # SD1Tokenizer
# self.embedding_identifier_tokenized = wrapped.tokenizer([self.embedding_identifier])["input_ids"][0][1:-1]
super().__init__(wrapped, hijack)
def encode_token_weights(self, tokens):
pass
def encode(self, tokens):
return self.encode_with_transformers(tokens, True)
def encode_with_transformers(self, tokens, return_pooled=False):
return self.encode_with_transformers_comfy_(tokens, return_pooled)
def tokenize_line(self, line):
line = parse_and_register_embeddings(self, line)
return super().tokenize_line(line)
def tokenize(self, texts):
tokenized = [self.tokenizer(text)["input_ids"][1:-1] for text in texts]
return tokenized
emb_re_ = r"(embedding:)?(?:({}[\w\.\-\!\$\/\\]+(\.safetensors|\.pt|\.bin)|(?(1)[\w\.\-\!\$\/\\]+|(?!)))(\.safetensors|\.pt|\.bin)?)(?::(\d+\.?\d*|\d*\.\d+))?"
def tokenize_with_weights_custom(self, text:str, return_word_ids=False):
'''
Takes a prompt and converts it to a list of (token, weight, word id) elements.
Tokens can both be integer tokens and pre computed CLIP tensors.
Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
Returned list has the dimensions NxM where M is the input size of CLIP
'''
if self.pad_with_end:
pad_token = self.end_token
else:
pad_token = 0
text = escape_important(text)
parsed_weights = token_weights(text, 1.0)
embs = get_valid_embeddings(self.embedding_directory) if self.embedding_directory is not None else []
embs_str = embs_str + '|' if (embs_str:='|'.join(embs)) else ''
emb_re = emb_re_.format(embs_str)
emb_re = re.compile(emb_re, flags=re.MULTILINE | re.UNICODE | re.IGNORECASE)
#tokenize words
tokens = []
for weighted_segment, weight in parsed_weights:
to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
to_tokenize = [x for x in to_tokenize if x != ""]
for word in to_tokenize:
matches = emb_re.finditer(word)
last_end = 0
leftovers=[]
for _, match in enumerate(matches, start=1):
start=match.start()
end=match.end()
if (fragment:=word[last_end:start]):
leftovers.append(fragment)
ext = ext if (ext:=match.group(4)) else ''
embedding_sname = embedding_sname if (embedding_sname:=match.group(2)) else ''
embedding_name = embedding_sname + ext
if embedding_name:
embed, leftover = self._try_get_embedding(embedding_name)
if embed is None:
print(f"warning, embedding:{embedding_name} does not exist, ignoring")
else:
if opts.debug:
print(f'[smZNodes] using embedding:{embedding_name}')
if len(embed.shape) == 1:
tokens.append([(embed, weight)])
else:
tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
last_end = end
if (fragment:=word[last_end:]):
leftovers.append(fragment)
word_new = ''.join(leftovers)
tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])
#reshape token array to CLIP input size
batched_tokens = []
batch = []
if self.start_token is not None:
batch.append((self.start_token, 1.0, 0))
batched_tokens.append(batch)
for i, t_group in enumerate(tokens):
#determine if we're going to try and keep the tokens in a single batch
is_large = len(t_group) >= self.max_word_length
while len(t_group) > 0:
if len(t_group) + len(batch) > self.max_length - 1:
remaining_length = self.max_length - len(batch) - 1
#break word in two and add end token
if is_large:
batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
batch.append((self.end_token, 1.0, 0))
t_group = t_group[remaining_length:]
#add end token and pad
else:
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
#start new batch
batch = []
if self.start_token is not None:
batch.append((self.start_token, 1.0, 0))
batched_tokens.append(batch)
else:
batch.extend([(t,w,i+1) for t,w in t_group])
t_group = []
#fill last batch
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch)))
if not return_word_ids:
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
return batched_tokens
def get_valid_embeddings(embedding_directory):
from builtins import any as b_any
exts = ['.safetensors', '.pt', '.bin']
if isinstance(embedding_directory, str):
embedding_directory = [embedding_directory]
embedding_directory = expand_directory_list(embedding_directory)
embs = []
for embd in embedding_directory:
for root, dirs, files in os.walk(embd, topdown=False):
for name in files:
if not b_any(x in os.path.splitext(name)[1] for x in exts): continue
n = os.path.basename(name)
for ext in exts: n=n.removesuffix(ext)
embs.append(re.escape(n))
embs.sort(key=len, reverse=True)
return embs
def parse_and_register_embeddings(self: FrozenCLIPEmbedderWithCustomWordsCustom|FrozenOpenCLIPEmbedder2WithCustomWordsCustom, text: str, return_word_ids=False):
from builtins import any as b_any
embedding_directory = self.wrapped.tokenizer_parent.embedding_directory
embs = get_valid_embeddings(embedding_directory)
embs_str = '|'.join(embs)
emb_re = emb_re_.format(embs_str + '|' if embs_str else '')
emb_re = re.compile(emb_re, flags=re.MULTILINE | re.UNICODE | re.IGNORECASE)
matches = emb_re.finditer(text)
for matchNum, match in enumerate(matches, start=1):
found=False
ext = ext if (ext:=match.group(4)) else ''
embedding_sname = embedding_sname if (embedding_sname:=match.group(2)) else ''
embedding_name = embedding_sname + ext
if embedding_name:
embed, _ = self.wrapped.tokenizer_parent._try_get_embedding(embedding_name)
if embed is not None:
found=True
if opts.debug:
print(f'[smZNodes] using embedding:{embedding_name}')
if embed.device != devices.device:
embed = embed.to(device=devices.device)
self.hijack.embedding_db.register_embedding(Embedding(embed, embedding_sname), self)
if not found:
print(f"warning, embedding:{embedding_name} does not exist, ignoring")
out = emb_re.sub(r"\2", text)
return out
def expand(tensor1, tensor2):
def adjust_tensor_shape(tensor_small, tensor_big):
# Calculate replication factor
# -(-a // b) is ceiling of division without importing math.ceil
replication_factor = -(-tensor_big.size(1) // tensor_small.size(1))
# Use repeat to extend tensor_small
tensor_small_extended = tensor_small.repeat(1, replication_factor, 1)
# Take the rows of the extended tensor_small to match tensor_big
tensor_small_matched = tensor_small_extended[:, :tensor_big.size(1), :]
return tensor_small_matched
# Check if their second dimensions are different
if tensor1.size(1) != tensor2.size(1):
# Check which tensor has the smaller second dimension and adjust its shape
if tensor1.size(1) < tensor2.size(1):
tensor1 = adjust_tensor_shape(tensor1, tensor2)
else:
tensor2 = adjust_tensor_shape(tensor2, tensor1)
return (tensor1, tensor2)
def reconstruct_schedules(schedules, step):
create_reconstruct_fn = lambda _cc: prompt_parser.reconstruct_multicond_batch if type(_cc).__name__ == "MulticondLearnedConditioning" else prompt_parser.reconstruct_cond_batch
reconstruct_fn = create_reconstruct_fn(schedules)
return reconstruct_fn(schedules, step)
class ClipTokenWeightEncoder:
def encode_token_weights(self, token_weight_pairs, steps=0, current_step=0, multi=False):
schedules = token_weight_pairs
texts = token_weight_pairs
conds_list = [[(0, 1.0)]]
from .modules.sd_hijack import model_hijack
try:
model_hijack.hijack(self)
if isinstance(token_weight_pairs, list) and isinstance(token_weight_pairs[0], str):
if multi: schedules = prompt_parser.get_multicond_learned_conditioning(model_hijack.cond_stage_model, texts, steps, None, opts.use_old_scheduling)
else: schedules = prompt_parser.get_learned_conditioning(model_hijack.cond_stage_model, texts, steps, None, opts.use_old_scheduling)
cond = reconstruct_schedules(schedules, current_step)
if type(cond) is tuple:
conds_list, cond = cond
pooled = cond.pooled.cpu()
cond = cond.cpu()
cond.pooled = pooled
cond.pooled.conds_list = conds_list
cond.pooled.schedules = schedules
else:
# comfy++
def encode_toks(_token_weight_pairs):
zs = []
first_pooled = None
for batch_chunk in _token_weight_pairs:
tokens = [x[0] for x in batch_chunk]
multipliers = [x[1] for x in batch_chunk]
z = model_hijack.cond_stage_model.process_tokens([tokens], [multipliers])
if first_pooled == None:
first_pooled = z.pooled
zs.append(z)
zcond = torch.hstack(zs)
zcond.pooled = first_pooled
return zcond
# non-sdxl will be something like: {"l": [[]]}
if isinstance(token_weight_pairs, dict):
token_weight_pairs = next(iter(token_weight_pairs.values()))
cond = encode_toks(token_weight_pairs)
pooled = cond.pooled.cpu()
cond = cond.cpu()
cond.pooled = pooled
cond.pooled.conds_list = conds_list
finally:
model_hijack.undo_hijack(model_hijack.cond_stage_model)
return (cond, cond.pooled)
class SD1ClipModel(ClipTokenWeightEncoder): ...
class SDXLClipG(ClipTokenWeightEncoder): ...
class SDXLClipModel(ClipTokenWeightEncoder):
def encode_token_weights(self: comfy.sdxl_clip.SDXLClipModel, token_weight_pairs, steps=0, current_step=0, multi=False):
token_weight_pairs_g = token_weight_pairs["g"]
token_weight_pairs_l = token_weight_pairs["l"]
self.clip_g.encode_token_weights_orig = self.clip_g.encode_token_weights
self.clip_l.encode_token_weights_orig = self.clip_l.encode_token_weights
self.clip_g.cond_stage_model = self.clip_g
self.clip_l.cond_stage_model = self.clip_l
self.clip_g.encode_token_weights = partial(SDXLClipG.encode_token_weights, self.clip_g)
self.clip_l.encode_token_weights = partial(SD1ClipModel.encode_token_weights, self.clip_l)
try:
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g, steps, current_step, multi)
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l, steps, current_step, multi)
# g_out, g_pooled = SDXLClipG.encode_token_weights(self.clip_g, token_weight_pairs_g, steps, current_step, multi)
# l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l, steps, current_step, multi)
finally:
self.clip_g.encode_token_weights = self.clip_g.encode_token_weights_orig
self.clip_l.encode_token_weights = self.clip_l.encode_token_weights_orig
self.clip_g.cond_stage_model = None
self.clip_l.cond_stage_model = None
if hasattr(g_pooled, 'schedules') and hasattr(l_pooled, 'schedules'):
g_pooled.schedules = {"g": g_pooled.schedules, "l": l_pooled.schedules}
g_out, l_out = expand(g_out, l_out)
l_out, g_out = expand(l_out, g_out)
return torch.cat([l_out, g_out], dim=-1), g_pooled
class SDXLRefinerClipModel(ClipTokenWeightEncoder):
def encode_token_weights(self: comfy.sdxl_clip.SDXLClipModel, token_weight_pairs, steps=0, current_step=0, multi=False):
self.clip_g.encode_token_weights_orig = self.clip_g.encode_token_weights
self.clip_g.encode_token_weights = partial(SDXLClipG.encode_token_weights, self.clip_g)
token_weight_pairs_g = token_weight_pairs["g"]
try: g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g, steps, current_step, multi)
finally: self.clip_g.encode_token_weights = self.clip_g.encode_token_weights_orig
if hasattr(g_pooled, 'schedules'):
g_pooled.schedules = {"g": g_pooled.schedules}
return (g_out, g_pooled)
def is_prompt_editing(schedules):
if schedules == None: return False
if not isinstance(schedules, dict):
schedules = {'g': schedules}
for k,v in schedules.items():
if type(v) == list:
if len(v[0]) != 1: return True
else:
if len(v.batch[0][0].schedules) != 1: return True
return False
# ===================================================================
# RNG
from .modules import rng_philox
def randn_without_seed(x, generator=None, randn_source="cpu"):
"""Generate a tensor with random numbers from a normal distribution using the previously initialized genrator.
Use either randn() or manual_seed() to initialize the generator."""
if randn_source == "nv":
return torch.asarray(generator.randn(x.size()), device=x.device)
else:
if generator is not None and generator.device.type == "cpu":
return torch.randn(x.size(), dtype=x.dtype, layout=x.layout, device=devices.cpu, generator=generator).to(device=x.device)
else:
return torch.randn(x.size(), dtype=x.dtype, layout=x.layout, device=x.device, generator=generator)
class TorchHijack:
"""This is here to replace torch.randn_like of k-diffusion.
k-diffusion has random_sampler argument for most samplers, but not for all, so
this is needed to properly replace every use of torch.randn_like.
We need to replace to make images generated in batches to be same as images generated individually."""
def __init__(self, generator, randn_source):
# self.rng = p.rng
self.generator = generator
self.randn_source = randn_source
def __getattr__(self, item):
if item == 'randn_like':
return self.randn_like
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
def randn_like(self, x):
return randn_without_seed(x, generator=self.generator, randn_source=self.randn_source)
def prepare_noise(latent_image, seed, noise_inds=None, device='cpu'):
"""
creates random noise given a latent image and a seed.
optional arg skip can be used to skip and discard x number of noise generations for a given seed
"""
from .modules.shared import opts
from comfy.sample import np
def get_generator(seed):
nonlocal device
nonlocal opts
_generator = torch.Generator(device=device)
generator = _generator.manual_seed(seed)
if opts.randn_source == 'nv':
generator = rng_philox.Generator(seed)
return generator
generator = generator_eta = get_generator(seed)
if opts.eta_noise_seed_delta > 0:
seed = min(int(seed + opts.eta_noise_seed_delta), int(0xffffffffffffffff))
generator_eta = get_generator(seed)
# hijack randn_like
import comfy.k_diffusion.sampling
comfy.k_diffusion.sampling.torch = TorchHijack(generator_eta, opts.randn_source)
if noise_inds is None:
shape = latent_image.size()
if opts.randn_source == 'nv':
return torch.asarray(generator.randn(shape), device=devices.cpu)
else:
return torch.randn(shape, dtype=latent_image.dtype, layout=latent_image.layout, device=device, generator=generator)
unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
noises = []
for i in range(unique_inds[-1]+1):
shape = [1] + list(latent_image.size())[1:]
if opts.randn_source == 'nv':
noise = torch.asarray(generator.randn(shape), device=devices.cpu)
else:
noise = torch.randn(shape, dtype=latent_image.dtype, layout=latent_image.layout, device=device, generator=generator)
if i in unique_inds:
noises.append(noise)
noises = [noises[i] for i in inverse]
noises = torch.cat(noises, axis=0)
return noises
# ===========================================================
def run(clip: comfy.sd.CLIP, text, parser, mean_normalization,
multi_conditioning, use_old_emphasis_implementation, with_SDXL,
ascore, width, height, crop_w, crop_h, target_width, target_height,
text_g, text_l, steps=1, step=0):
opts.prompt_mean_norm = mean_normalization
opts.use_old_emphasis_implementation = use_old_emphasis_implementation
opts.CLIP_stop_at_last_layers = abs(clip.layer_idx or 1)
is_sdxl = "SDXL" in type(clip.cond_stage_model).__name__
if is_sdxl:
# Prevents tensor shape mismatch
# This is what comfy does by default
opts.batch_cond_uncond = True
parser_d = {"full": "Full parser",
"compel": "Compel parser",
"A1111": "A1111 parser",
"fixed attention": "Fixed attention",
"comfy++": "Comfy++ parser",
}
opts.prompt_attention = parser_d.get(parser, "Comfy parser")
sdxl_params = {}
if with_SDXL and is_sdxl:
sdxl_params = {
"aesthetic_score": ascore, "width": width, "height": height,
"crop_w": crop_w, "crop_h": crop_h, "target_width": target_width,
"target_height": target_height, "text_g": text_g, "text_l": text_l
}
pooled={}
if hasattr(comfy.sd1_clip, 'SDTokenizer'):
SDTokenizer = comfy.sd1_clip.SDTokenizer
else:
SDTokenizer = comfy.sd1_clip.SD1Tokenizer
tokenize_with_weights_orig = SDTokenizer.tokenize_with_weights
if parser == "comfy":
SDTokenizer.tokenize_with_weights = tokenize_with_weights_custom
clip_model_type_name = type(clip.cond_stage_model).__name__
if with_SDXL and is_sdxl:
if clip_model_type_name== "SDXLClipModel":
out = CLIPTextEncodeSDXL().encode(clip, width, height, crop_w, crop_h, target_width, target_height, text_g, text_l)
out[0][0][1]['aesthetic_score'] = sdxl_params['aesthetic_score']
elif clip_model_type_name == "SDXLRefinerClipModel":
out = CLIPTextEncodeSDXLRefiner().encode(clip, ascore, width, height, text)
for item in ['aesthetic_score', 'width', 'height', 'text_g', 'text_l']:
sdxl_params.pop(item)
out[0][0][1].update(sdxl_params)
else:
raise NotImplementedError()
else:
out = CLIPTextEncode().encode(clip, text)
SDTokenizer.tokenize_with_weights = tokenize_with_weights_orig
return out
else:
texts = [text]
create_prompts = lambda txts: prompt_parser.SdConditioning(txts)
texts = create_prompts(texts)
if is_sdxl:
if with_SDXL:
texts = {"g": create_prompts([text_g]), "l": create_prompts([text_l])}
else:
texts = {"g": texts, "l": texts}
# clip_clone = clip.clone()
clip_clone = clip
clip_clone.cond_stage_model_orig = clip_clone.cond_stage_model
clip_clone.cond_stage_model.encode_token_weights_orig = clip_clone.cond_stage_model.encode_token_weights
def patch_cond_stage_model():
nonlocal clip_clone
from .smZNodes import SD1ClipModel, SDXLClipModel, SDXLRefinerClipModel
ctp = type(clip_clone.cond_stage_model)
clip_clone.cond_stage_model.tokenizer = clip_clone.tokenizer
if ctp is comfy.sdxl_clip.SDXLClipModel:
clip_clone.cond_stage_model.encode_token_weights = SDXLClipModel.encode_token_weights
clip_clone.cond_stage_model.clip_g.tokenizer = clip_clone.tokenizer.clip_g
clip_clone.cond_stage_model.clip_l.tokenizer = clip_clone.tokenizer.clip_l
elif ctp is comfy.sdxl_clip.SDXLRefinerClipModel:
clip_clone.cond_stage_model.encode_token_weights = SDXLRefinerClipModel.encode_token_weights
clip_clone.cond_stage_model.clip_g.tokenizer = clip_clone.tokenizer.clip_g
else:
clip_clone.cond_stage_model.encode_token_weights = SD1ClipModel.encode_token_weights
tokens = texts
if parser == "comfy++":
SDTokenizer.tokenize_with_weights = tokenize_with_weights_custom
tokens = clip_clone.tokenize(text)
SDTokenizer.tokenize_with_weights = tokenize_with_weights_orig
cond = pooled = None
patch_cond_stage_model()
try:
clip_clone.cond_stage_model.encode_token_weights = partial(clip_clone.cond_stage_model.encode_token_weights, clip_clone.cond_stage_model, steps=steps, current_step=step, multi=multi_conditioning)
cond, pooled = clip_clone.encode_from_tokens(tokens, True)
finally:
clip_clone.cond_stage_model = clip_clone.cond_stage_model_orig
clip_clone.cond_stage_model.encode_token_weights = clip_clone.cond_stage_model.encode_token_weights_orig
if opts.debug:
print('[smZNodes] using steps', steps)
gen_id = lambda : binascii.hexlify(os.urandom(1024))[64:72]
id=gen_id()
schedules = getattr(pooled, 'schedules', [[(0, 1.0)]])
pooled = {"pooled_output": pooled, "from_smZ": True, "smZid": id, "conds_list": pooled.conds_list, **sdxl_params}
out = [[cond, pooled]]
if is_prompt_editing(schedules):
for x in range(1,steps):
if type(schedules) is not dict:
cond=reconstruct_schedules(schedules, x)
if type(cond) is tuple:
conds_list, cond = cond
pooled['conds_list'] = conds_list
cond=cond.cpu()
elif type(schedules) is dict and len(schedules) == 1: # SDXLRefiner
cond = reconstruct_schedules(next(iter(schedules.values())), x)
if type(cond) is tuple:
conds_list, cond = cond
pooled['conds_list'] = conds_list
cond=cond.cpu()
elif type(schedules) is dict:
g_out = reconstruct_schedules(schedules['g'], x)
if type(g_out) is tuple: _, g_out = g_out
l_out = reconstruct_schedules(schedules['l'], x)
if type(l_out) is tuple: _, l_out = l_out
g_out, l_out = expand(g_out, l_out)
l_out, g_out = expand(l_out, g_out)
cond = torch.cat([l_out, g_out], dim=-1).cpu()
else:
raise NotImplementedError
out = out + [[cond, pooled]]
out[0][1]['orig_len'] = len(out)
return (out,)
# ========================================================================
from server import PromptServer
def prompt_handler(json_data):
data=json_data['prompt']
def tmp():
nonlocal data
current_clip_id = None
def find_nearest_ksampler(clip_id):
"""Find the nearest KSampler node that references the given CLIPTextEncode id."""
for ksampler_id, node in data.items():
if "Sampler" in node["class_type"] or "sampler" in node["class_type"]:
# Check if this KSampler node directly or indirectly references the given CLIPTextEncode node
if check_link_to_clip(ksampler_id, clip_id):
return get_steps(data, ksampler_id)
return None
def get_steps(graph, node_id):
node = graph.get(str(node_id), {})
steps_input_value = node.get("inputs", {}).get("steps", None)
if steps_input_value is None:
steps_input_value = node.get("inputs", {}).get("sigmas", None)
while(True):
# Base case: it's a direct value
if isinstance(steps_input_value, (int, float, str)):
return min(max(1, int(steps_input_value)), 10000)
# Loop case: it's a reference to another node
elif isinstance(steps_input_value, list):
ref_node_id, ref_input_index = steps_input_value
ref_node = graph.get(str(ref_node_id), {})
steps_input_value = ref_node.get("inputs", {}).get("steps", None)
if steps_input_value is None:
keys = list(ref_node.get("inputs", {}).keys())
ref_input_key = keys[ref_input_index % len(keys)]
steps_input_value = ref_node.get("inputs", {}).get(ref_input_key)
else:
return None
def check_link_to_clip(node_id, clip_id, visited=None):
"""Check if a given node links directly or indirectly to a CLIPTextEncode node."""
if visited is None:
visited = set()
node = data[node_id]
if node_id in visited:
return False
visited.add(node_id)
for input_value in node["inputs"].values():
if isinstance(input_value, list) and input_value[0] == clip_id:
return True
if isinstance(input_value, list) and check_link_to_clip(input_value[0], clip_id, visited):
return True
return False
# Update each CLIPTextEncode node's steps with the steps from its nearest referencing KSampler node
for clip_id, node in data.items():
if node["class_type"] == "smZ CLIPTextEncode":
current_clip_id = clip_id
steps = find_nearest_ksampler(clip_id)
if steps is not None:
node["inputs"]["smZ_steps"] = steps
if opts.debug:
print(f'[smZNodes] id: {current_clip_id} | steps: {steps}')
tmp()
return json_data
if hasattr(PromptServer.instance, 'add_on_prompt_handler'):
PromptServer.instance.add_on_prompt_handler(prompt_handler)
# ========================================================================
def bounded_modulo(number, modulo_value):
return number if number < modulo_value else modulo_value
def get_adm(c):
for y in ["adm_encoded", "c_adm", "y"]:
if y in c:
c_c_adm = c[y]
if y == "adm_encoded": y="c_adm"
if type(c_c_adm) is not torch.Tensor: c_c_adm = c_c_adm.cond
return {y: c_c_adm, 'key': y}
return None
getp=lambda x: x[1] if type(x) is list else x
def calc_cond(c, current_step):
"""Group by smZ conds that may do prompt-editing / regular conds / comfy conds."""
_cond = []
# Group by conds from smZ
fn=lambda x : getp(x).get("from_smZ", None) is not None
an_iterator = itertools.groupby(c, fn )
for key, group in an_iterator:
ls=list(group)
# Group by prompt-editing conds
fn2=lambda x : getp(x).get("smZid", None)
an_iterator2 = itertools.groupby(ls, fn2)
for key2, group2 in an_iterator2:
ls2=list(group2)
if key2 is not None:
orig_len = getp(ls2[0]).get('orig_len', 1)
i = bounded_modulo(current_step, orig_len - 1)
_cond = _cond + [ls2[i]]
else:
_cond = _cond + ls2
return _cond
CFGNoisePredictorOrig = comfy.samplers.CFGNoisePredictor
class CFGNoisePredictor(CFGNoisePredictorOrig):
def __init__(self, model):
super().__init__(model)
self.step = 0
self.inner_model2 = CFGDenoiser(model.apply_model)
self.s_min_uncond = opts.s_min_uncond
self.c_adm = None
self.init_cond = None
self.init_uncond = None
self.is_prompt_editing_u = False
self.is_prompt_editing_c = False
def apply_model(self, *args, **kwargs):
x=kwargs['x'] if 'x' in kwargs else args[0]
timestep=kwargs['timestep'] if 'timestep' in kwargs else args[1]
cond=kwargs['cond'] if 'cond' in kwargs else args[2]
uncond=kwargs['uncond'] if 'uncond' in kwargs else args[3]
cond_scale=kwargs['cond_scale'] if 'cond_scale' in kwargs else args[4]
model_options=kwargs['model_options'] if 'model_options' in kwargs else {}
cc=calc_cond(cond, self.step)
uu=calc_cond(uncond, self.step)
self.step += 1
if (any([getp(p).get('from_smZ', False) for p in cc]) or
any([getp(p).get('from_smZ', False) for p in uu])):
if model_options.get('transformer_options',None) is None:
model_options['transformer_options'] = {}
model_options['transformer_options']['from_smZ'] = True
if not opts.use_CFGDenoiser or not model_options['transformer_options'].get('from_smZ', False):
if 'cond' in kwargs: kwargs['cond'] = cc
else: args[2]=cc
if 'uncond' in kwargs: kwargs['uncond'] = uu
else: args[3]=uu
out = super().apply_model(*args, **kwargs)
else:
# Only supports one cond
for ix in range(len(cc)):
if getp(cc[ix]).get('from_smZ', False):
cc = [cc[ix]]
break
for ix in range(len(uu)):
if getp(uu[ix]).get('from_smZ', False):
uu = [uu[ix]]
break
c=getp(cc[0])
u=getp(uu[0])
_cc = cc[0][0] if type(cc[0]) is list else cc[0]['model_conds']['c_crossattn'].cond
_uu = uu[0][0] if type(uu[0]) is list else uu[0]['model_conds']['c_crossattn'].cond
conds_list = c.get('conds_list', [[(0, 1.0)]])
if 'model_conds' in c: c = c['model_conds']
if 'model_conds' in u: u = u['model_conds']
c_c_adm = get_adm(c)
if c_c_adm is not None:
u_c_adm = get_adm(u)
k = c_c_adm['key']
self.c_adm = {k: torch.cat([c_c_adm[k], u_c_adm[u_c_adm['key']]]).to(device=x.device), 'key': k}
# SDXL. Need to pad with repeats
_cc, _uu = expand(_cc, _uu)
_uu, _cc = expand(_uu, _cc)
x.c_adm = self.c_adm
image_cond = txt2img_image_conditioning(None, x)
out = self.inner_model2(x, timestep, cond=(conds_list, _cc), uncond=_uu, cond_scale=cond_scale, s_min_uncond=self.s_min_uncond, image_cond=image_cond)
return out
def txt2img_image_conditioning(sd_model, x, width=None, height=None):
return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
# if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models
# # The "masked-image" in this case will just be all zeros since the entire image is masked.
# image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
# image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning))
# # Add the fake full 1s mask to the first dimension.
# image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
# image_conditioning = image_conditioning.to(x.dtype)
# return image_conditioning
# elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models
# return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
# else:
# # Dummy zero conditioning if we're not using inpainting or unclip models.
# # Still takes up a bit of memory, but no encoder call.
# # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
# return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
# =======================================================================================
def inject_code(original_func, data):
# Get the source code of the original function
original_source = inspect.getsource(original_func)
# Split the source code into lines
lines = original_source.split("\n")
for item in data:
# Find the line number of the target line
target_line_number = None
for i, line in enumerate(lines):
if item['target_line'] in line:
target_line_number = i + 1
# Find the indentation of the line where the new code will be inserted
indentation = ''
for char in line:
if char == ' ':
indentation += char
else:
break
# Indent the new code to match the original
code_to_insert = dedent(item['code_to_insert'])
code_to_insert = indent(code_to_insert, indentation)
break
if target_line_number is None:
raise FileNotFoundError
# Target line not found, return the original function
# return original_func
# Insert the code to be injected after the target line
lines.insert(target_line_number, code_to_insert)
# Recreate the modified source code
modified_source = "\n".join(lines)
modified_source = dedent(modified_source.strip("\n"))
# Create a temporary file to write the modified source code so I can still view the
# source code when debugging.
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.py') as temp_file:
temp_file.write(modified_source)
temp_file.flush()
MODULE_PATH = temp_file.name
MODULE_NAME = __name__.split('.')[0] + "_patch_modules"
spec = importlib.util.spec_from_file_location(MODULE_NAME, MODULE_PATH)
module = importlib.util.module_from_spec(spec)
sys.modules[spec.name] = module
spec.loader.exec_module(module)
# Pass global variables to the modified module
globals_dict = original_func.__globals__
for key, value in globals_dict.items():
setattr(module, key, value)
modified_module = module
# Retrieve the modified function from the module
modified_function = getattr(modified_module, original_func.__name__)
# If the original function was a method, bind it to the first argument (self)
if inspect.ismethod(original_func):
modified_function = modified_function.__get__(original_func.__self__, original_func.__class__)
# Update the metadata of the modified function to associate it with the original function
functools.update_wrapper(modified_function, original_func)
# Return the modified function
return modified_function
# ========================================================================
# DPM++ 2M alt
from tqdm.auto import trange
@torch.no_grad()
def sample_dpmpp_2m_alt(model, x, sigmas, extra_args=None, callback=None, disable=None):
"""DPM-Solver++(2M)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
old_denoised = None
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
if old_denoised is None or sigmas[i + 1] == 0:
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
else:
h_last = t - t_fn(sigmas[i - 1])
r = h_last / h
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
sigma_progress = i / len(sigmas)
adjustment_factor = 1 + (0.15 * (sigma_progress * sigma_progress))
old_denoised = denoised * adjustment_factor
return x
def add_sample_dpmpp_2m_alt():
from comfy.samplers import KSampler, k_diffusion_sampling
if "dpmpp_2m_alt" not in KSampler.SAMPLERS:
try:
idx = KSampler.SAMPLERS.index("dpmpp_2m")
KSampler.SAMPLERS.insert(idx+1, "dpmpp_2m_alt")
setattr(k_diffusion_sampling, 'sample_dpmpp_2m_alt', sample_dpmpp_2m_alt)
import importlib
importlib.reload(k_diffusion_sampling)
except ValueError as err:
pass
|