File size: 14,169 Bytes
baa8e90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import torch
import os
from .resampler import Resampler
import contextlib
import comfy.model_management
from comfy.ldm.modules.attention import optimized_attention
from comfy.clip_vision import clip_preprocess
CURRENT_DIR = os.path.dirname(os.path.realpath(__file__))
# attention_channels of input, output, middle
SD_V12_CHANNELS = [320] * 4 + [640] * 4 + [1280] * 4 + [1280] * 6 + [640] * 6 + [320] * 6 + [1280] * 2
SD_XL_CHANNELS = [640] * 8 + [1280] * 40 + [1280] * 60 + [640] * 12 + [1280] * 20
def get_file_list(path):
return [f for f in os.listdir(path) if f.endswith('.bin') or f.endswith('.safetensors')]
def set_model_patch_replace(model, patch_kwargs, key):
to = model.model_options["transformer_options"]
if "patches_replace" not in to:
to["patches_replace"] = {}
if "attn2" not in to["patches_replace"]:
to["patches_replace"]["attn2"] = {}
if key not in to["patches_replace"]["attn2"]:
patch = CrossAttentionPatch(**patch_kwargs)
to["patches_replace"]["attn2"][key] = patch
else:
to["patches_replace"]["attn2"][key].set_new_condition(**patch_kwargs)
def load_ipadapter(ckpt_path):
model = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
if ckpt_path.lower().endswith(".safetensors"):
st_model = {"image_proj": {}, "ip_adapter": {}}
for key in model.keys():
if key.startswith("image_proj."):
st_model["image_proj"][key.replace("image_proj.", "")] = model[key]
elif key.startswith("ip_adapter."):
st_model["ip_adapter"][key.replace("ip_adapter.", "")] = model[key]
# sort keys
model = {"image_proj": st_model["image_proj"], "ip_adapter": {}}
sorted_keys = sorted(st_model["ip_adapter"].keys(), key=lambda x: int(x.split(".")[0]))
for key in sorted_keys:
model["ip_adapter"][key] = st_model["ip_adapter"][key]
st_model = None
if not "ip_adapter" in model.keys() or not model["ip_adapter"]:
raise Exception("invalid IPAdapter model {}".format(ckpt_path))
return model
class ImageProjModel(torch.nn.Module):
"""Projection Model"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = torch.nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
# Cross Attention to_k, to_v for IPAdapter
class To_KV(torch.nn.Module):
def __init__(self, cross_attention_dim):
super().__init__()
channels = SD_XL_CHANNELS if cross_attention_dim == 2048 else SD_V12_CHANNELS
self.to_kvs = torch.nn.ModuleList([torch.nn.Linear(cross_attention_dim, channel, bias=False) for channel in channels])
def load_state_dict(self, state_dict):
# input -> output -> middle
for i, key in enumerate(state_dict.keys()):
self.to_kvs[i].weight.data = state_dict[key]
class IPAdapterModel(torch.nn.Module):
def __init__(self, state_dict, plus, cross_attention_dim=768, clip_embeddings_dim=1024, clip_extra_context_tokens=4, sdxl_plus=False):
super().__init__()
self.plus = plus
if self.plus:
self.image_proj_model = Resampler(
dim=1280 if sdxl_plus else cross_attention_dim,
depth=4,
dim_head=64,
heads=20 if sdxl_plus else 12,
num_queries=clip_extra_context_tokens,
embedding_dim=clip_embeddings_dim,
output_dim=cross_attention_dim,
ff_mult=4
)
else:
self.image_proj_model = ImageProjModel(
cross_attention_dim=cross_attention_dim,
clip_embeddings_dim=clip_embeddings_dim,
clip_extra_context_tokens=clip_extra_context_tokens
)
self.image_proj_model.load_state_dict(state_dict["image_proj"])
self.ip_layers = To_KV(cross_attention_dim)
self.ip_layers.load_state_dict(state_dict["ip_adapter"])
@torch.inference_mode()
def get_image_embeds(self, cond, uncond):
image_prompt_embeds = self.image_proj_model(cond)
uncond_image_prompt_embeds = self.image_proj_model(uncond)
return image_prompt_embeds, uncond_image_prompt_embeds
class IPAdapter:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"image": ("IMAGE", ),
"clip_vision": ("CLIP_VISION", ),
"weight": ("FLOAT", {
"default": 1,
"min": -1, #Minimum value
"max": 3, #Maximum value
"step": 0.05 #Slider's step
}),
"model_name": (get_file_list(os.path.join(CURRENT_DIR,"models")), ),
"dtype": (["fp16", "fp32"], ),
},
"optional": {
"mask": ("MASK",),
}
}
RETURN_TYPES = ("MODEL", "CLIP_VISION_OUTPUT")
FUNCTION = "adapter"
CATEGORY = "loaders"
def adapter(self, model, image, clip_vision, weight, model_name, dtype, mask=None):
device = comfy.model_management.get_torch_device()
self.dtype = torch.float32 if dtype == "fp32" or device.type == "mps" else torch.float16
self.weight = weight # ip_adapter scale
ip_state_dict = load_ipadapter(os.path.join(CURRENT_DIR, os.path.join(CURRENT_DIR, "models", model_name)))
self.plus = "latents" in ip_state_dict["image_proj"]
# cross_attention_dim is equal to text_encoder output
self.cross_attention_dim = ip_state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[1]
self.sdxl = self.cross_attention_dim == 2048
self.sdxl_plus = self.sdxl and self.plus
# number of tokens of ip_adapter embedding
if self.plus:
self.clip_extra_context_tokens = ip_state_dict["image_proj"]["latents"].shape[1]
else:
self.clip_extra_context_tokens = ip_state_dict["image_proj"]["proj.weight"].shape[0] // self.cross_attention_dim
cond, uncond, outputs = self.clip_vision_encode(clip_vision, image, self.plus)
self.clip_embeddings_dim = cond.shape[-1]
self.ipadapter = IPAdapterModel(
ip_state_dict,
plus = self.plus,
cross_attention_dim = self.cross_attention_dim,
clip_embeddings_dim = self.clip_embeddings_dim,
clip_extra_context_tokens = self.clip_extra_context_tokens,
sdxl_plus = self.sdxl_plus
)
self.ipadapter.to(device, dtype=self.dtype)
self.image_emb, self.uncond_image_emb = self.ipadapter.get_image_embeds(cond.to(device, dtype=self.dtype), uncond.to(device, dtype=self.dtype))
self.image_emb = self.image_emb.to(device, dtype=self.dtype)
self.uncond_image_emb = self.uncond_image_emb.to(device, dtype=self.dtype)
# Not sure of batch size at this point.
self.cond_uncond_image_emb = None
new_model = model.clone()
if mask is not None:
mask = mask.squeeze().to(device)
'''
patch_name of sdv1-2: ("input" or "output" or "middle", block_id)
patch_name of sdxl: ("input" or "output" or "middle", block_id, transformer_index)
'''
patch_kwargs = {
"number": 0,
"weight": self.weight,
"ipadapter": self.ipadapter,
"dtype": self.dtype,
"cond": self.image_emb,
"uncond": self.uncond_image_emb,
"mask": mask
}
if not self.sdxl:
for id in [1,2,4,5,7,8]: # id of input_blocks that have cross attention
set_model_patch_replace(new_model, patch_kwargs, ("input", id))
patch_kwargs["number"] += 1
for id in [3,4,5,6,7,8,9,10,11]: # id of output_blocks that have cross attention
set_model_patch_replace(new_model, patch_kwargs, ("output", id))
patch_kwargs["number"] += 1
set_model_patch_replace(new_model, patch_kwargs, ("middle", 0))
else:
for id in [4,5,7,8]: # id of input_blocks that have cross attention
block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth
for index in block_indices:
set_model_patch_replace(new_model, patch_kwargs, ("input", id, index))
patch_kwargs["number"] += 1
for id in range(6): # id of output_blocks that have cross attention
block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth
for index in block_indices:
set_model_patch_replace(new_model, patch_kwargs, ("output", id, index))
patch_kwargs["number"] += 1
for index in range(10):
set_model_patch_replace(new_model, patch_kwargs, ("middle", 0, index))
patch_kwargs["number"] += 1
return (new_model, outputs)
def clip_vision_encode(self, clip_vision, image, plus=False):
inputs = clip_preprocess(image)
comfy.model_management.load_model_gpu(clip_vision.patcher)
pixel_values = inputs.to(clip_vision.load_device)
if clip_vision.dtype != torch.float32:
precision_scope = torch.autocast
else:
precision_scope = lambda a, b: contextlib.nullcontext(a)
with precision_scope(comfy.model_management.get_autocast_device(clip_vision.load_device), torch.float32):
outputs = clip_vision.model(pixel_values=pixel_values, output_hidden_states=True)
if plus:
cond = outputs.hidden_states[-2]
with precision_scope(comfy.model_management.get_autocast_device(clip_vision.load_device), torch.float32):
uncond = clip_vision.model(torch.zeros_like(pixel_values), output_hidden_states=True).hidden_states[-2]
else:
cond = outputs.image_embeds
uncond = torch.zeros_like(cond)
for k in outputs:
t = outputs[k]
if k == "hidden_states":
outputs[k] = None
elif t is not None:
outputs[k] = t.cpu()
return cond, uncond, outputs
class CrossAttentionPatch:
# forward for patching
def __init__(self, weight, ipadapter, dtype, number, cond, uncond, mask=None):
self.weights = [weight]
self.ipadapters = [ipadapter]
self.conds = [cond]
self.unconds = [uncond]
self.dtype = dtype
self.number = number
self.masks = [mask]
def set_new_condition(self, weight, ipadapter, cond, uncond, dtype, number, mask=None):
self.weights.append(weight)
self.ipadapters.append(ipadapter)
self.conds.append(cond)
self.unconds.append(uncond)
self.masks.append(mask)
self.dtype = dtype
def __call__(self, n, context_attn2, value_attn2, extra_options):
org_dtype = n.dtype
cond_or_uncond = extra_options["cond_or_uncond"]
original_shape = (extra_options["original_shape"][2], extra_options["original_shape"][3])
with torch.autocast("cuda", dtype=self.dtype):
q = n
k = context_attn2
v = value_attn2
b, _, _ = q.shape
batch_prompt = b // len(cond_or_uncond)
out = optimized_attention(q, k, v, extra_options["n_heads"])
for weight, cond, uncond, ipadapter, mask in zip(self.weights, self.conds, self.unconds, self.ipadapters, self.masks):
k_cond = ipadapter.ip_layers.to_kvs[self.number*2](cond).repeat(batch_prompt, 1, 1)
k_uncond = ipadapter.ip_layers.to_kvs[self.number*2](uncond).repeat(batch_prompt, 1, 1)
v_cond = ipadapter.ip_layers.to_kvs[self.number*2+1](cond).repeat(batch_prompt, 1, 1)
v_uncond = ipadapter.ip_layers.to_kvs[self.number*2+1](uncond).repeat(batch_prompt, 1, 1)
ip_k = torch.cat([(k_cond, k_uncond)[i] for i in cond_or_uncond], dim=0)
ip_v = torch.cat([(v_cond, v_uncond)[i] for i in cond_or_uncond], dim=0)
# Convert ip_k and ip_v to the same dtype as q
ip_k = ip_k.to(dtype=q.dtype)
ip_v = ip_v.to(dtype=q.dtype)
ip_out = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"])
if mask is not None:
# 良い方法募集
if original_shape[0] * original_shape[1] == q.shape[1]:
down_sample_rate = 1
elif (original_shape[0] // 2) * (original_shape[1] // 2) == q.shape[1]:
down_sample_rate = 2
elif (original_shape[0] // 4) * (original_shape[1] // 4) == q.shape[1]:
down_sample_rate = 4
else:
down_sample_rate = 8
mask_downsample = torch.nn.functional.interpolate(mask.unsqueeze(0).unsqueeze(0), size=(original_shape[0] // down_sample_rate, original_shape[1] // down_sample_rate), mode="nearest").squeeze(0)
mask_downsample = mask_downsample.view(1, -1, 1).repeat(out.shape[0], 1, out.shape[2])
ip_out = ip_out * mask_downsample
out = out + ip_out * weight
return out.to(dtype=org_dtype)
|