File size: 1,758 Bytes
baa8e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from ..utils import common_annotator_call, annotator_ckpts_path, HF_MODEL_NAME, DWPOSE_MODEL_NAME, create_node_input_types
import comfy.model_management as model_management

class OpenPose_Preprocessor:
    @classmethod
    def INPUT_TYPES(s):
        return create_node_input_types(
            detect_hand = (["enable", "disable"], {"default": "enable"}),
            detect_body = (["enable", "disable"], {"default": "enable"}),
            detect_face = (["enable", "disable"], {"default": "enable"})
        )
        
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "estimate_pose"

    CATEGORY = "ControlNet Preprocessors/Faces and Poses"

    def estimate_pose(self, image, detect_hand, detect_body, detect_face, resolution=512, **kwargs):
        from controlnet_aux.open_pose import OpenposeDetector

        detect_hand = detect_hand == "enable"
        detect_body = detect_body == "enable"
        detect_face = detect_face == "enable"


        self.openpose_json = None
        model = OpenposeDetector.from_pretrained(HF_MODEL_NAME, cache_dir=annotator_ckpts_path).to(model_management.get_torch_device())
        
        def cb(image, **kwargs):
            result = model(image, **kwargs)
            self.openpose_json = result[1]
            return result[0]
        
        out = common_annotator_call(cb, image, include_hand=detect_hand, include_face=detect_face, include_body=detect_body, image_and_json=True, resolution=resolution)
        del model
        return {
            'ui': { "openpose_json": [self.openpose_json] },
            "result": (out, )
        }

NODE_CLASS_MAPPINGS = {
    "OpenposePreprocessor": OpenPose_Preprocessor,
}
NODE_DISPLAY_NAME_MAPPINGS = {
    "OpenposePreprocessor": "OpenPose Pose Recognition",
}