StupidGame's picture
Upload 1941 files
baa8e90
import os
import torch
import numpy as np
from PIL import Image, ImageOps
from .control import ControlWeights, LatentKeyframeGroup, TimestepKeyframeGroup, TimestepKeyframe
from .logger import logger
class LoadImagesFromDirectory:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"directory": ("STRING", {"default": ""}),
},
"optional": {
"image_load_cap": ("INT", {"default": 0, "min": 0, "step": 1}),
"start_index": ("INT", {"default": 0, "min": 0, "step": 1}),
}
}
RETURN_TYPES = ("IMAGE", "MASK", "INT")
FUNCTION = "load_images"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/deprecated"
def load_images(self, directory: str, image_load_cap: int = 0, start_index: int = 0):
if not os.path.isdir(directory):
raise FileNotFoundError(f"Directory '{directory} cannot be found.'")
dir_files = os.listdir(directory)
if len(dir_files) == 0:
raise FileNotFoundError(f"No files in directory '{directory}'.")
dir_files = sorted(dir_files)
dir_files = [os.path.join(directory, x) for x in dir_files]
# start at start_index
dir_files = dir_files[start_index:]
images = []
masks = []
limit_images = False
if image_load_cap > 0:
limit_images = True
image_count = 0
for image_path in dir_files:
if os.path.isdir(image_path):
continue
if limit_images and image_count >= image_load_cap:
break
i = Image.open(image_path)
i = ImageOps.exif_transpose(i)
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
images.append(image)
masks.append(mask)
image_count += 1
if len(images) == 0:
raise FileNotFoundError(f"No images could be loaded from directory '{directory}'.")
return (torch.cat(images, dim=0), torch.stack(masks, dim=0), image_count)
class TimestepKeyframeNodeDeprecated:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}, ),
},
"optional": {
"control_net_weights": ("CONTROL_NET_WEIGHTS", ),
"t2i_adapter_weights": ("T2I_ADAPTER_WEIGHTS", ),
"latent_keyframe": ("LATENT_KEYFRAME", ),
"prev_timestep_keyframe": ("TIMESTEP_KEYFRAME", ),
}
}
RETURN_TYPES = ("TIMESTEP_KEYFRAME", )
FUNCTION = "load_keyframe"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/keyframes"
def load_keyframe(self,
start_percent: float,
control_net_weights: ControlWeights=None,
latent_keyframe: LatentKeyframeGroup=None,
prev_timestep_keyframe: TimestepKeyframeGroup=None):
if not prev_timestep_keyframe:
prev_timestep_keyframe = TimestepKeyframeGroup()
keyframe = TimestepKeyframe(start_percent, control_net_weights, latent_keyframe)
prev_timestep_keyframe.add(keyframe)
return (prev_timestep_keyframe,)