|
import copy |
|
import os |
|
from segment_anything import SamPredictor |
|
import torch.nn.functional as F |
|
|
|
from impact.utils import * |
|
from collections import namedtuple |
|
import numpy as np |
|
from skimage.measure import label, regionprops |
|
|
|
import nodes |
|
import comfy_extras.nodes_upscale_model as model_upscale |
|
from server import PromptServer |
|
import comfy |
|
import impact.wildcards as wildcards |
|
import math |
|
import cv2 |
|
|
|
SEG = namedtuple("SEG", |
|
['cropped_image', 'cropped_mask', 'confidence', 'crop_region', 'bbox', 'label', 'control_net_wrapper'], |
|
defaults=[None]) |
|
|
|
pb_id_cnt = 0 |
|
preview_bridge_image_id_map = {} |
|
preview_bridge_image_name_map = {} |
|
preview_bridge_cache = {} |
|
|
|
|
|
def set_previewbridge_image(node_id, file, item): |
|
global pb_id_cnt |
|
|
|
if file in preview_bridge_image_name_map: |
|
pb_id = preview_bridge_image_name_map[node_id, file] |
|
if pb_id.startswith(f"${node_id}"): |
|
return pb_id |
|
|
|
pb_id = f"${node_id}-{pb_id_cnt}" |
|
preview_bridge_image_id_map[pb_id] = (file, item) |
|
preview_bridge_image_name_map[node_id, file] = (pb_id, item) |
|
pb_id_cnt += 1 |
|
|
|
return pb_id |
|
|
|
|
|
def erosion_mask(mask, grow_mask_by): |
|
if len(mask.shape) == 3: |
|
mask = mask.squeeze(0) |
|
|
|
w = mask.shape[1] |
|
h = mask.shape[0] |
|
|
|
device = comfy.model_management.get_torch_device() |
|
mask = mask.clone().to(device) |
|
mask2 = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(w, h), |
|
mode="bilinear").to(device) |
|
if grow_mask_by == 0: |
|
mask_erosion = mask2 |
|
else: |
|
kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by)).to(device) |
|
padding = math.ceil((grow_mask_by - 1) / 2) |
|
|
|
mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask2.round(), kernel_tensor, padding=padding), 0, 1) |
|
|
|
return mask_erosion[:, :, :w, :h].round().cpu() |
|
|
|
|
|
def ksampler_wrapper(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise, |
|
refiner_ratio=None, refiner_model=None, refiner_clip=None, refiner_positive=None, |
|
refiner_negative=None): |
|
if refiner_ratio is None or refiner_model is None or refiner_clip is None or refiner_positive is None or refiner_negative is None: |
|
refined_latent = \ |
|
nodes.KSampler().sample(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, |
|
denoise)[0] |
|
else: |
|
advanced_steps = math.floor(steps / denoise) |
|
start_at_step = advanced_steps - steps |
|
end_at_step = start_at_step + math.floor(steps * (1.0 - refiner_ratio)) |
|
|
|
print(f"pre: {start_at_step} .. {end_at_step} / {advanced_steps}") |
|
temp_latent = \ |
|
nodes.KSamplerAdvanced().sample(model, "enable", seed, advanced_steps, cfg, sampler_name, scheduler, |
|
positive, negative, latent_image, start_at_step, end_at_step, |
|
"enable")[0] |
|
|
|
if 'noise_mask' in latent_image: |
|
|
|
|
|
|
|
|
|
|
|
latent_compositor = nodes.NODE_CLASS_MAPPINGS['LatentCompositeMasked']() |
|
temp_latent = \ |
|
latent_compositor.composite(latent_image, temp_latent, 0, 0, False, latent_image['noise_mask'])[0] |
|
|
|
print(f"post: {end_at_step} .. {advanced_steps + 1} / {advanced_steps}") |
|
refined_latent = \ |
|
nodes.KSamplerAdvanced().sample(refiner_model, "disable", seed, advanced_steps, cfg, sampler_name, scheduler, |
|
refiner_positive, refiner_negative, temp_latent, end_at_step, |
|
advanced_steps + 1, |
|
"disable")[0] |
|
|
|
return refined_latent |
|
|
|
|
|
class REGIONAL_PROMPT: |
|
def __init__(self, mask, sampler): |
|
if len(mask.shape) == 3: |
|
mask = mask.squeeze(0) |
|
|
|
self.mask = mask |
|
self.sampler = sampler |
|
self.mask_erosion = None |
|
self.erosion_factor = None |
|
|
|
def get_mask_erosion(self, factor): |
|
if self.mask_erosion is None or self.erosion_factor != factor: |
|
self.mask_erosion = erosion_mask(self.mask, factor) |
|
self.erosion_factor = factor |
|
|
|
return self.mask_erosion |
|
|
|
|
|
class NO_BBOX_DETECTOR: |
|
pass |
|
|
|
|
|
class NO_SEGM_DETECTOR: |
|
pass |
|
|
|
|
|
def create_segmasks(results): |
|
bboxs = results[1] |
|
segms = results[2] |
|
confidence = results[3] |
|
|
|
results = [] |
|
for i in range(len(segms)): |
|
item = (bboxs[i], segms[i].astype(np.float32), confidence[i]) |
|
results.append(item) |
|
return results |
|
|
|
|
|
def gen_detection_hints_from_mask_area(x, y, mask, threshold, use_negative): |
|
if len(mask.shape) == 3: |
|
mask = mask.squeeze(0) |
|
|
|
points = [] |
|
plabs = [] |
|
|
|
|
|
y_step = max(3, int(mask.shape[0] / 20)) |
|
x_step = max(3, int(mask.shape[1] / 20)) |
|
|
|
for i in range(0, len(mask), y_step): |
|
for j in range(0, len(mask[i]), x_step): |
|
if mask[i][j] > threshold: |
|
points.append((x + j, y + i)) |
|
plabs.append(1) |
|
elif use_negative and mask[i][j] == 0: |
|
points.append((x + j, y + i)) |
|
plabs.append(0) |
|
|
|
return points, plabs |
|
|
|
|
|
def gen_negative_hints(w, h, x1, y1, x2, y2): |
|
npoints = [] |
|
nplabs = [] |
|
|
|
|
|
y_step = max(3, int(w / 20)) |
|
x_step = max(3, int(h / 20)) |
|
|
|
for i in range(10, h - 10, y_step): |
|
for j in range(10, w - 10, x_step): |
|
if not (x1 - 10 <= j and j <= x2 + 10 and y1 - 10 <= i and i <= y2 + 10): |
|
npoints.append((j, i)) |
|
nplabs.append(0) |
|
|
|
return npoints, nplabs |
|
|
|
|
|
def enhance_detail(image, model, clip, vae, guide_size, guide_size_for_bbox, max_size, bbox, seed, steps, cfg, |
|
sampler_name, |
|
scheduler, positive, negative, denoise, noise_mask, force_inpaint, wildcard_opt=None, |
|
detailer_hook=None, |
|
refiner_ratio=None, refiner_model=None, refiner_clip=None, refiner_positive=None, |
|
refiner_negative=None, control_net_wrapper=None, cycle=1): |
|
if noise_mask is not None and len(noise_mask.shape) == 3: |
|
noise_mask = noise_mask.squeeze(0) |
|
|
|
if wildcard_opt is not None and wildcard_opt != "": |
|
model, _, positive = wildcards.process_with_loras(wildcard_opt, model, clip) |
|
|
|
h = image.shape[1] |
|
w = image.shape[2] |
|
|
|
bbox_h = bbox[3] - bbox[1] |
|
bbox_w = bbox[2] - bbox[0] |
|
|
|
|
|
if not force_inpaint and bbox_h >= guide_size and bbox_w >= guide_size: |
|
print(f"Detailer: segment skip (enough big)") |
|
return None, None |
|
|
|
if guide_size_for_bbox: |
|
|
|
upscale = guide_size / min(bbox_w, bbox_h) |
|
else: |
|
|
|
upscale = guide_size / min(w, h) |
|
|
|
new_w = int(w * upscale) |
|
new_h = int(h * upscale) |
|
|
|
|
|
if 'aitemplate_keep_loaded' in model.model_options: |
|
max_size = min(4096, max_size) |
|
|
|
if new_w > max_size or new_h > max_size: |
|
upscale *= max_size / max(new_w, new_h) |
|
new_w = int(w * upscale) |
|
new_h = int(h * upscale) |
|
|
|
if not force_inpaint: |
|
if upscale <= 1.0: |
|
print(f"Detailer: segment skip [determined upscale factor={upscale}]") |
|
return None, None |
|
|
|
if new_w == 0 or new_h == 0: |
|
print(f"Detailer: segment skip [zero size={new_w, new_h}]") |
|
return None, None |
|
else: |
|
if upscale <= 1.0 or new_w == 0 or new_h == 0: |
|
print(f"Detailer: force inpaint") |
|
upscale = 1.0 |
|
new_w = w |
|
new_h = h |
|
|
|
if detailer_hook is not None: |
|
new_w, new_h = detailer_hook.touch_scaled_size(new_w, new_h) |
|
|
|
print(f"Detailer: segment upscale for ({bbox_w, bbox_h}) | crop region {w, h} x {upscale} -> {new_w, new_h}") |
|
|
|
|
|
upscaled_image = scale_tensor(new_w, new_h, torch.from_numpy(image)) |
|
|
|
|
|
latent_image = to_latent_image(upscaled_image, vae) |
|
|
|
upscaled_mask = None |
|
if noise_mask is not None: |
|
|
|
noise_mask = torch.from_numpy(noise_mask) |
|
upscaled_mask = torch.nn.functional.interpolate(noise_mask.unsqueeze(0).unsqueeze(0), size=(new_h, new_w), |
|
mode='bilinear', align_corners=False) |
|
|
|
|
|
upscaled_mask = upscaled_mask.squeeze().squeeze() |
|
latent_image['noise_mask'] = upscaled_mask |
|
|
|
if detailer_hook is not None: |
|
latent_image = detailer_hook.post_encode(latent_image) |
|
|
|
cnet_pil = None |
|
if control_net_wrapper is not None: |
|
positive, cnet_pil = control_net_wrapper.apply(positive, upscaled_image, upscaled_mask) |
|
|
|
refined_latent = latent_image |
|
for i in range(0, cycle): |
|
if detailer_hook is not None and hasattr(detailer_hook, 'cycle_latent'): |
|
refined_latent = detailer_hook.cycle_latent(i, refined_latent) |
|
|
|
refined_latent = ksampler_wrapper(model, seed+i, steps, cfg, sampler_name, scheduler, positive, negative, |
|
refined_latent, denoise, |
|
refiner_ratio, refiner_model, refiner_clip, refiner_positive, refiner_negative) |
|
|
|
if detailer_hook is not None: |
|
refined_latent = detailer_hook.pre_decode(refined_latent) |
|
|
|
|
|
refined_image = vae.decode(refined_latent['samples']) |
|
|
|
if detailer_hook is not None: |
|
refined_image = detailer_hook.post_decode(refined_image) |
|
|
|
|
|
refined_image = scale_tensor_and_to_pil(w, h, refined_image) |
|
|
|
|
|
|
|
return refined_image, cnet_pil |
|
|
|
|
|
def enhance_detail_for_animatediff(image_frames, model, clip, vae, guide_size, guide_size_for_bbox, max_size, bbox, seed, steps, cfg, |
|
sampler_name, |
|
scheduler, positive, negative, denoise, noise_mask, wildcard_opt=None, |
|
detailer_hook=None, |
|
refiner_ratio=None, refiner_model=None, refiner_clip=None, refiner_positive=None, |
|
refiner_negative=None): |
|
if noise_mask is not None and len(noise_mask.shape) == 3: |
|
noise_mask = noise_mask.squeeze(0) |
|
|
|
if wildcard_opt is not None and wildcard_opt != "": |
|
model, _, positive = wildcards.process_with_loras(wildcard_opt, model, clip) |
|
|
|
h = image_frames.shape[1] |
|
w = image_frames.shape[2] |
|
|
|
bbox_h = bbox[3] - bbox[1] |
|
bbox_w = bbox[2] - bbox[0] |
|
|
|
|
|
if guide_size_for_bbox: |
|
|
|
upscale = guide_size / min(bbox_w, bbox_h) |
|
else: |
|
|
|
upscale = guide_size / min(w, h) |
|
|
|
new_w = int(w * upscale) |
|
new_h = int(h * upscale) |
|
|
|
|
|
if 'aitemplate_keep_loaded' in model.model_options: |
|
max_size = min(4096, max_size) |
|
|
|
if new_w > max_size or new_h > max_size: |
|
upscale *= max_size / max(new_w, new_h) |
|
new_w = int(w * upscale) |
|
new_h = int(h * upscale) |
|
|
|
if upscale <= 1.0 or new_w == 0 or new_h == 0: |
|
print(f"Detailer: force inpaint") |
|
upscale = 1.0 |
|
new_w = w |
|
new_h = h |
|
|
|
if detailer_hook is not None: |
|
new_w, new_h = detailer_hook.touch_scaled_size(new_w, new_h) |
|
|
|
print(f"Detailer: segment upscale for ({bbox_w, bbox_h}) | crop region {w, h} x {upscale} -> {new_w, new_h}") |
|
|
|
|
|
noise_mask = torch.from_numpy(noise_mask) |
|
upscaled_mask = torch.nn.functional.interpolate(noise_mask.unsqueeze(0).unsqueeze(0), size=(new_h, new_w), |
|
mode='bilinear', align_corners=False) |
|
|
|
upscaled_mask = upscaled_mask.squeeze().squeeze() |
|
|
|
latent_frames = None |
|
for image in image_frames: |
|
image = torch.from_numpy(image).unsqueeze(0) |
|
|
|
|
|
upscaled_image = scale_tensor(new_w, new_h, image) |
|
|
|
|
|
samples = to_latent_image(upscaled_image, vae)['samples'] |
|
|
|
if latent_frames is None: |
|
latent_frames = samples |
|
else: |
|
latent_frames = torch.concat((latent_frames, samples), dim=0) |
|
|
|
upscaled_mask = upscaled_mask.expand(len(image_frames), -1, -1) |
|
|
|
latent = { |
|
'noise_mask': upscaled_mask, |
|
'samples': latent_frames |
|
} |
|
|
|
if detailer_hook is not None: |
|
latent = detailer_hook.post_encode(latent) |
|
|
|
refined_latent = ksampler_wrapper(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, |
|
latent, denoise, |
|
refiner_ratio, refiner_model, refiner_clip, refiner_positive, refiner_negative) |
|
|
|
if detailer_hook is not None: |
|
refined_latent = detailer_hook.pre_decode(refined_latent) |
|
|
|
refined_image_frames = None |
|
for refined_sample in refined_latent['samples']: |
|
refined_sample = refined_sample.unsqueeze(0) |
|
|
|
|
|
refined_image = vae.decode(refined_sample) |
|
|
|
if refined_image_frames is None: |
|
refined_image_frames = refined_image |
|
else: |
|
refined_image_frames = torch.concat((refined_image_frames, refined_image), dim=0) |
|
|
|
if detailer_hook is not None: |
|
refined_image_frames = detailer_hook.post_decode(refined_image_frames) |
|
|
|
refined_image_frames = nodes.ImageScale().upscale(image=refined_image_frames, upscale_method='lanczos', width=w, height=h, crop='disabled')[0] |
|
|
|
return refined_image_frames |
|
|
|
|
|
def composite_to(dest_latent, crop_region, src_latent): |
|
x1 = crop_region[0] |
|
y1 = crop_region[1] |
|
|
|
|
|
lc = nodes.LatentComposite() |
|
orig_image = lc.composite(dest_latent, src_latent, x1, y1) |
|
|
|
return orig_image[0] |
|
|
|
|
|
def sam_predict(predictor, points, plabs, bbox, threshold): |
|
point_coords = None if not points else np.array(points) |
|
point_labels = None if not plabs else np.array(plabs) |
|
|
|
box = np.array([bbox]) if bbox is not None else None |
|
|
|
cur_masks, scores, _ = predictor.predict(point_coords=point_coords, point_labels=point_labels, box=box) |
|
|
|
total_masks = [] |
|
|
|
selected = False |
|
max_score = 0 |
|
for idx in range(len(scores)): |
|
if scores[idx] > max_score: |
|
max_score = scores[idx] |
|
max_mask = cur_masks[idx] |
|
|
|
if scores[idx] >= threshold: |
|
selected = True |
|
total_masks.append(cur_masks[idx]) |
|
else: |
|
pass |
|
|
|
if not selected: |
|
total_masks.append(max_mask) |
|
|
|
return total_masks |
|
|
|
|
|
def make_sam_mask(sam_model, segs, image, detection_hint, dilation, |
|
threshold, bbox_expansion, mask_hint_threshold, mask_hint_use_negative): |
|
if sam_model.is_auto_mode: |
|
device = comfy.model_management.get_torch_device() |
|
sam_model.to(device=device) |
|
|
|
try: |
|
predictor = SamPredictor(sam_model) |
|
image = np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) |
|
predictor.set_image(image, "RGB") |
|
|
|
total_masks = [] |
|
|
|
use_small_negative = mask_hint_use_negative == "Small" |
|
|
|
|
|
segs = segs[1] |
|
if detection_hint == "mask-points": |
|
points = [] |
|
plabs = [] |
|
|
|
for i in range(len(segs)): |
|
bbox = segs[i].bbox |
|
center = center_of_bbox(segs[i].bbox) |
|
points.append(center) |
|
|
|
|
|
if use_small_negative and bbox[2] - bbox[0] < 10: |
|
plabs.append(0) |
|
else: |
|
plabs.append(1) |
|
|
|
detected_masks = sam_predict(predictor, points, plabs, None, threshold) |
|
total_masks += detected_masks |
|
|
|
else: |
|
for i in range(len(segs)): |
|
bbox = segs[i].bbox |
|
center = center_of_bbox(bbox) |
|
|
|
x1 = max(bbox[0] - bbox_expansion, 0) |
|
y1 = max(bbox[1] - bbox_expansion, 0) |
|
x2 = min(bbox[2] + bbox_expansion, image.shape[1]) |
|
y2 = min(bbox[3] + bbox_expansion, image.shape[0]) |
|
|
|
dilated_bbox = [x1, y1, x2, y2] |
|
|
|
points = [] |
|
plabs = [] |
|
if detection_hint == "center-1": |
|
points.append(center) |
|
plabs = [1] |
|
|
|
elif detection_hint == "horizontal-2": |
|
gap = (x2 - x1) / 3 |
|
points.append((x1 + gap, center[1])) |
|
points.append((x1 + gap * 2, center[1])) |
|
plabs = [1, 1] |
|
|
|
elif detection_hint == "vertical-2": |
|
gap = (y2 - y1) / 3 |
|
points.append((center[0], y1 + gap)) |
|
points.append((center[0], y1 + gap * 2)) |
|
plabs = [1, 1] |
|
|
|
elif detection_hint == "rect-4": |
|
x_gap = (x2 - x1) / 3 |
|
y_gap = (y2 - y1) / 3 |
|
points.append((x1 + x_gap, center[1])) |
|
points.append((x1 + x_gap * 2, center[1])) |
|
points.append((center[0], y1 + y_gap)) |
|
points.append((center[0], y1 + y_gap * 2)) |
|
plabs = [1, 1, 1, 1] |
|
|
|
elif detection_hint == "diamond-4": |
|
x_gap = (x2 - x1) / 3 |
|
y_gap = (y2 - y1) / 3 |
|
points.append((x1 + x_gap, y1 + y_gap)) |
|
points.append((x1 + x_gap * 2, y1 + y_gap)) |
|
points.append((x1 + x_gap, y1 + y_gap * 2)) |
|
points.append((x1 + x_gap * 2, y1 + y_gap * 2)) |
|
plabs = [1, 1, 1, 1] |
|
|
|
elif detection_hint == "mask-point-bbox": |
|
center = center_of_bbox(segs[i].bbox) |
|
points.append(center) |
|
plabs = [1] |
|
|
|
elif detection_hint == "mask-area": |
|
points, plabs = gen_detection_hints_from_mask_area(segs[i].crop_region[0], segs[i].crop_region[1], |
|
segs[i].cropped_mask, |
|
mask_hint_threshold, use_small_negative) |
|
|
|
if mask_hint_use_negative == "Outter": |
|
npoints, nplabs = gen_negative_hints(image.shape[0], image.shape[1], |
|
segs[i].crop_region[0], segs[i].crop_region[1], |
|
segs[i].crop_region[2], segs[i].crop_region[3]) |
|
|
|
points += npoints |
|
plabs += nplabs |
|
|
|
detected_masks = sam_predict(predictor, points, plabs, dilated_bbox, threshold) |
|
total_masks += detected_masks |
|
|
|
|
|
mask = combine_masks2(total_masks) |
|
|
|
finally: |
|
if sam_model.is_auto_mode: |
|
print(f"semd to {device}") |
|
sam_model.to(device="cpu") |
|
|
|
if mask is not None: |
|
mask = mask.float() |
|
mask = dilate_mask(mask.cpu().numpy(), dilation) |
|
mask = torch.from_numpy(mask) |
|
else: |
|
mask = torch.zeros((8, 8), dtype=torch.float32, device="cpu") |
|
|
|
return mask |
|
|
|
|
|
def generate_detection_hints(image, seg, center, detection_hint, dilated_bbox, mask_hint_threshold, use_small_negative, |
|
mask_hint_use_negative): |
|
[x1, y1, x2, y2] = dilated_bbox |
|
|
|
points = [] |
|
plabs = [] |
|
if detection_hint == "center-1": |
|
points.append(center) |
|
plabs = [1] |
|
|
|
elif detection_hint == "horizontal-2": |
|
gap = (x2 - x1) / 3 |
|
points.append((x1 + gap, center[1])) |
|
points.append((x1 + gap * 2, center[1])) |
|
plabs = [1, 1] |
|
|
|
elif detection_hint == "vertical-2": |
|
gap = (y2 - y1) / 3 |
|
points.append((center[0], y1 + gap)) |
|
points.append((center[0], y1 + gap * 2)) |
|
plabs = [1, 1] |
|
|
|
elif detection_hint == "rect-4": |
|
x_gap = (x2 - x1) / 3 |
|
y_gap = (y2 - y1) / 3 |
|
points.append((x1 + x_gap, center[1])) |
|
points.append((x1 + x_gap * 2, center[1])) |
|
points.append((center[0], y1 + y_gap)) |
|
points.append((center[0], y1 + y_gap * 2)) |
|
plabs = [1, 1, 1, 1] |
|
|
|
elif detection_hint == "diamond-4": |
|
x_gap = (x2 - x1) / 3 |
|
y_gap = (y2 - y1) / 3 |
|
points.append((x1 + x_gap, y1 + y_gap)) |
|
points.append((x1 + x_gap * 2, y1 + y_gap)) |
|
points.append((x1 + x_gap, y1 + y_gap * 2)) |
|
points.append((x1 + x_gap * 2, y1 + y_gap * 2)) |
|
plabs = [1, 1, 1, 1] |
|
|
|
elif detection_hint == "mask-point-bbox": |
|
center = center_of_bbox(seg.bbox) |
|
points.append(center) |
|
plabs = [1] |
|
|
|
elif detection_hint == "mask-area": |
|
points, plabs = gen_detection_hints_from_mask_area(seg.crop_region[0], seg.crop_region[1], |
|
seg.cropped_mask, |
|
mask_hint_threshold, use_small_negative) |
|
|
|
if mask_hint_use_negative == "Outter": |
|
npoints, nplabs = gen_negative_hints(image.shape[0], image.shape[1], |
|
seg.crop_region[0], seg.crop_region[1], |
|
seg.crop_region[2], seg.crop_region[3]) |
|
|
|
points += npoints |
|
plabs += nplabs |
|
|
|
return points, plabs |
|
|
|
|
|
def convert_and_stack_masks(masks): |
|
if len(masks) == 0: |
|
return None |
|
|
|
mask_tensors = [] |
|
for mask in masks: |
|
mask_array = np.array(mask, dtype=np.uint8) |
|
mask_tensor = torch.from_numpy(mask_array) |
|
mask_tensors.append(mask_tensor) |
|
|
|
stacked_masks = torch.stack(mask_tensors, dim=0) |
|
stacked_masks = stacked_masks.unsqueeze(1) |
|
|
|
return stacked_masks |
|
|
|
|
|
def merge_and_stack_masks(stacked_masks, group_size): |
|
if stacked_masks is None: |
|
return None |
|
|
|
num_masks = stacked_masks.size(0) |
|
merged_masks = [] |
|
|
|
for i in range(0, num_masks, group_size): |
|
subset_masks = stacked_masks[i:i + group_size] |
|
merged_mask = torch.any(subset_masks, dim=0) |
|
merged_masks.append(merged_mask) |
|
|
|
if len(merged_masks) > 0: |
|
merged_masks = torch.stack(merged_masks, dim=0) |
|
|
|
return merged_masks |
|
|
|
|
|
def segs_scale_match(segs, target_shape): |
|
h = segs[0][0] |
|
w = segs[0][1] |
|
|
|
th = target_shape[1] |
|
tw = target_shape[2] |
|
|
|
if (h == th and w == tw) or h == 0 or w == 0: |
|
return segs |
|
|
|
rh = th / h |
|
rw = tw / w |
|
|
|
new_segs = [] |
|
for seg in segs[1]: |
|
cropped_image = seg.cropped_image |
|
cropped_mask = seg.cropped_mask |
|
x1, y1, x2, y2 = seg.crop_region |
|
bx1, by1, bx2, by2 = seg.bbox |
|
|
|
crop_region = int(x1*rw), int(y1*rw), int(x2*rh), int(y2*rh) |
|
bbox = int(bx1*rw), int(by1*rw), int(bx2*rh), int(by2*rh) |
|
new_w = crop_region[2] - crop_region[0] |
|
new_h = crop_region[3] - crop_region[1] |
|
|
|
cropped_mask = torch.from_numpy(cropped_mask) |
|
cropped_mask = torch.nn.functional.interpolate(cropped_mask.unsqueeze(0).unsqueeze(0), size=(new_h, new_w), |
|
mode='bilinear', align_corners=False) |
|
cropped_mask = cropped_mask.squeeze(0).squeeze(0).numpy() |
|
|
|
if cropped_image is not None: |
|
cropped_image = scale_tensor(new_w, new_h, torch.from_numpy(cropped_image)) |
|
cropped_image = cropped_image.numpy() |
|
|
|
new_seg = SEG(cropped_image, cropped_mask, seg.confidence, crop_region, bbox, seg.label, seg.control_net_wrapper) |
|
new_segs.append(new_seg) |
|
|
|
return ((th, tw), new_segs) |
|
|
|
|
|
|
|
|
|
def every_three_pick_last(stacked_masks): |
|
selected_masks = stacked_masks[2::3] |
|
return selected_masks |
|
|
|
|
|
def make_sam_mask_segmented(sam_model, segs, image, detection_hint, dilation, |
|
threshold, bbox_expansion, mask_hint_threshold, mask_hint_use_negative): |
|
if sam_model.is_auto_mode: |
|
device = comfy.model_management.get_torch_device() |
|
sam_model.to(device=device) |
|
|
|
try: |
|
predictor = SamPredictor(sam_model) |
|
image = np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) |
|
predictor.set_image(image, "RGB") |
|
|
|
total_masks = [] |
|
|
|
use_small_negative = mask_hint_use_negative == "Small" |
|
|
|
|
|
segs = segs[1] |
|
if detection_hint == "mask-points": |
|
points = [] |
|
plabs = [] |
|
|
|
for i in range(len(segs)): |
|
bbox = segs[i].bbox |
|
center = center_of_bbox(bbox) |
|
points.append(center) |
|
|
|
|
|
if use_small_negative and bbox[2] - bbox[0] < 10: |
|
plabs.append(0) |
|
else: |
|
plabs.append(1) |
|
|
|
detected_masks = sam_predict(predictor, points, plabs, None, threshold) |
|
total_masks += detected_masks |
|
|
|
else: |
|
for i in range(len(segs)): |
|
bbox = segs[i].bbox |
|
center = center_of_bbox(bbox) |
|
x1 = max(bbox[0] - bbox_expansion, 0) |
|
y1 = max(bbox[1] - bbox_expansion, 0) |
|
x2 = min(bbox[2] + bbox_expansion, image.shape[1]) |
|
y2 = min(bbox[3] + bbox_expansion, image.shape[0]) |
|
|
|
dilated_bbox = [x1, y1, x2, y2] |
|
|
|
points, plabs = generate_detection_hints(image, segs[i], center, detection_hint, dilated_bbox, |
|
mask_hint_threshold, use_small_negative, |
|
mask_hint_use_negative) |
|
|
|
detected_masks = sam_predict(predictor, points, plabs, dilated_bbox, threshold) |
|
|
|
total_masks += detected_masks |
|
|
|
|
|
mask = combine_masks2(total_masks) |
|
|
|
finally: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pass |
|
|
|
mask_working_device = torch.device("cpu") |
|
|
|
if mask is not None: |
|
mask = mask.float() |
|
mask = dilate_mask(mask.cpu().numpy(), dilation) |
|
mask = torch.from_numpy(mask) |
|
mask = mask.to(device=mask_working_device) |
|
else: |
|
|
|
height, width, _ = image.shape |
|
mask = torch.zeros( |
|
(height, width), dtype=torch.float32, device=mask_working_device |
|
) |
|
|
|
stacked_masks = convert_and_stack_masks(total_masks) |
|
|
|
return (mask, merge_and_stack_masks(stacked_masks, group_size=3)) |
|
|
|
|
|
|
|
def segs_bitwise_and_mask(segs, mask): |
|
if len(mask.shape) == 3: |
|
mask = mask.squeeze(0) |
|
|
|
if mask is None: |
|
print("[SegsBitwiseAndMask] Cannot operate: MASK is empty.") |
|
return ([],) |
|
|
|
items = [] |
|
|
|
mask = (mask.cpu().numpy() * 255).astype(np.uint8) |
|
|
|
for seg in segs[1]: |
|
cropped_mask = (seg.cropped_mask * 255).astype(np.uint8) |
|
crop_region = seg.crop_region |
|
|
|
cropped_mask2 = mask[crop_region[1]:crop_region[3], crop_region[0]:crop_region[2]] |
|
|
|
new_mask = np.bitwise_and(cropped_mask.astype(np.uint8), cropped_mask2) |
|
new_mask = new_mask.astype(np.float32) / 255.0 |
|
|
|
item = SEG(seg.cropped_image, new_mask, seg.confidence, seg.crop_region, seg.bbox, seg.label, None) |
|
items.append(item) |
|
|
|
return segs[0], items |
|
|
|
|
|
def apply_mask_to_each_seg(segs, masks): |
|
if masks is None: |
|
print("[SegsBitwiseAndMask] Cannot operate: MASK is empty.") |
|
return (segs[0], [],) |
|
|
|
items = [] |
|
|
|
masks = masks.squeeze(1) |
|
|
|
for seg, mask in zip(segs[1], masks): |
|
cropped_mask = (seg.cropped_mask * 255).astype(np.uint8) |
|
crop_region = seg.crop_region |
|
|
|
cropped_mask2 = (mask.cpu().numpy() * 255).astype(np.uint8) |
|
cropped_mask2 = cropped_mask2[crop_region[1]:crop_region[3], crop_region[0]:crop_region[2]] |
|
|
|
new_mask = np.bitwise_and(cropped_mask.astype(np.uint8), cropped_mask2) |
|
new_mask = new_mask.astype(np.float32) / 255.0 |
|
|
|
item = SEG(seg.cropped_image, new_mask, seg.confidence, seg.crop_region, seg.bbox, seg.label, None) |
|
items.append(item) |
|
|
|
return segs[0], items |
|
|
|
|
|
class ONNXDetector: |
|
onnx_model = None |
|
|
|
def __init__(self, onnx_model): |
|
self.onnx_model = onnx_model |
|
|
|
def detect(self, image, threshold, dilation, crop_factor, drop_size=1, detailer_hook=None): |
|
drop_size = max(drop_size, 1) |
|
try: |
|
import impact.onnx as onnx |
|
|
|
h = image.shape[1] |
|
w = image.shape[2] |
|
|
|
labels, scores, boxes = onnx.onnx_inference(image, self.onnx_model) |
|
|
|
|
|
result = [] |
|
|
|
for i in range(len(labels)): |
|
if scores[i] > threshold: |
|
item_bbox = boxes[i] |
|
x1, y1, x2, y2 = item_bbox |
|
|
|
if x2 - x1 > drop_size and y2 - y1 > drop_size: |
|
crop_region = make_crop_region(w, h, item_bbox, crop_factor) |
|
|
|
if detailer_hook is not None: |
|
crop_region = item_bbox.post_crop_region(w, h, item_bbox, crop_region) |
|
|
|
crop_x1, crop_y1, crop_x2, crop_y2, = crop_region |
|
|
|
|
|
cropped_mask = np.zeros((crop_y2 - crop_y1, crop_x2 - crop_x1)) |
|
cropped_mask[y1 - crop_y1:y2 - crop_y1, x1 - crop_x1:x2 - crop_x1] = 1 |
|
cropped_mask = dilate_mask(cropped_mask, dilation) |
|
|
|
|
|
item = SEG(None, cropped_mask, scores[i], crop_region, item_bbox, str(labels[i]), None) |
|
result.append(item) |
|
|
|
shape = h, w |
|
return shape, result |
|
except Exception as e: |
|
print(f"ONNXDetector: unable to execute.\n{e}") |
|
pass |
|
|
|
def detect_combined(self, image, threshold, dilation): |
|
return segs_to_combined_mask(self.detect(image, threshold, dilation, 1)) |
|
|
|
def setAux(self, x): |
|
pass |
|
|
|
|
|
def mask_to_segs(mask, combined, crop_factor, bbox_fill, drop_size=1, label='A', crop_min_size=None, detailer_hook=None, is_contour=True): |
|
drop_size = max(drop_size, 1) |
|
if mask is None: |
|
print("[mask_to_segs] Cannot operate: MASK is empty.") |
|
return ([],) |
|
|
|
if isinstance(mask, np.ndarray): |
|
pass |
|
else: |
|
try: |
|
mask = mask.numpy() |
|
except AttributeError: |
|
print("[mask_to_segs] Cannot operate: MASK is not a NumPy array or Tensor.") |
|
return ([],) |
|
|
|
if mask is None: |
|
print("[mask_to_segs] Cannot operate: MASK is empty.") |
|
return ([],) |
|
|
|
result = [] |
|
|
|
if len(mask.shape) == 2: |
|
mask = np.expand_dims(mask, axis=0) |
|
|
|
for i in range(mask.shape[0]): |
|
mask_i = mask[i] |
|
|
|
if combined: |
|
indices = np.nonzero(mask_i) |
|
if len(indices[0]) > 0 and len(indices[1]) > 0: |
|
bbox = ( |
|
np.min(indices[1]), |
|
np.min(indices[0]), |
|
np.max(indices[1]), |
|
np.max(indices[0]), |
|
) |
|
crop_region = make_crop_region( |
|
mask_i.shape[1], mask_i.shape[0], bbox, crop_factor |
|
) |
|
x1, y1, x2, y2 = crop_region |
|
|
|
if detailer_hook is not None: |
|
crop_region = detailer_hook.post_crop_region(mask_i.shape[1], mask_i.shape[0], bbox, crop_region) |
|
|
|
if x2 - x1 > 0 and y2 - y1 > 0: |
|
cropped_mask = mask_i[y1:y2, x1:x2] |
|
|
|
if cropped_mask is not None: |
|
item = SEG(None, cropped_mask, 1.0, crop_region, bbox, label, None) |
|
result.append(item) |
|
|
|
else: |
|
mask_i_uint8 = (mask_i * 255.0).astype(np.uint8) |
|
contours, _ = cv2.findContours(mask_i_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
for contour in contours: |
|
separated_mask = np.zeros_like(mask_i_uint8) |
|
cv2.drawContours(separated_mask, [contour], 0, 255, -1) |
|
separated_mask = np.array(separated_mask / 255.0).astype(np.float32) |
|
|
|
x, y, w, h = cv2.boundingRect(contour) |
|
bbox = x, y, x + w, y + h |
|
crop_region = make_crop_region( |
|
mask_i.shape[1], mask_i.shape[0], bbox, crop_factor, crop_min_size |
|
) |
|
|
|
if detailer_hook is not None: |
|
crop_region = detailer_hook.post_crop_region(mask_i.shape[1], mask_i.shape[0], bbox, crop_region) |
|
|
|
if w > drop_size and h > drop_size: |
|
if is_contour: |
|
mask_src = separated_mask |
|
else: |
|
mask_src = mask_i |
|
|
|
cropped_mask = np.array( |
|
mask_src[ |
|
crop_region[1]: crop_region[3], |
|
crop_region[0]: crop_region[2], |
|
] |
|
) |
|
|
|
if bbox_fill: |
|
cx1, cy1, _, _ = crop_region |
|
bx1 = x - cx1 |
|
bx2 = x+w - cx1 |
|
by1 = y - cy1 |
|
by2 = y+h - cy1 |
|
cropped_mask[by1:by2, bx1:bx2] = 1.0 |
|
|
|
if cropped_mask is not None: |
|
item = SEG(None, cropped_mask, 1.0, crop_region, bbox, label, None) |
|
result.append(item) |
|
|
|
if not result: |
|
print(f"[mask_to_segs] Empty mask.") |
|
|
|
print(f"# of Detected SEGS: {len(result)}") |
|
|
|
|
|
|
|
|
|
return (mask.shape[1], mask.shape[2]), result |
|
|
|
|
|
def mediapipe_facemesh_to_segs(image, crop_factor, bbox_fill, crop_min_size, drop_size, dilation, face, mouth, left_eyebrow, left_eye, left_pupil, right_eyebrow, right_eye, right_pupil): |
|
parts = { |
|
"face": np.array([0x0A, 0xC8, 0x0A]), |
|
"mouth": np.array([0x0A, 0xB4, 0x0A]), |
|
"left_eyebrow": np.array([0xB4, 0xDC, 0x0A]), |
|
"left_eye": np.array([0xB4, 0xC8, 0x0A]), |
|
"left_pupil": np.array([0xFA, 0xC8, 0x0A]), |
|
"right_eyebrow": np.array([0x0A, 0xDC, 0xB4]), |
|
"right_eye": np.array([0x0A, 0xC8, 0xB4]), |
|
"right_pupil": np.array([0x0A, 0xC8, 0xFA]), |
|
} |
|
|
|
def create_segment(image, color): |
|
image = (image * 255).to(torch.uint8) |
|
image = image.squeeze(0).numpy() |
|
mask = cv2.inRange(image, color, color) |
|
|
|
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
if contours: |
|
max_contour = max(contours, key=cv2.contourArea) |
|
convex_hull = cv2.convexHull(max_contour) |
|
convex_segment = np.zeros_like(image) |
|
cv2.fillPoly(convex_segment, [convex_hull], (255, 255, 255)) |
|
|
|
convex_segment = np.expand_dims(convex_segment, axis=0).astype(np.float32) / 255.0 |
|
tensor = torch.from_numpy(convex_segment) |
|
mask_tensor = torch.any(tensor != 0, dim=-1).float() |
|
mask_tensor = mask_tensor.squeeze(0) |
|
mask_tensor = torch.from_numpy(dilate_mask(mask_tensor.numpy(), dilation)) |
|
return mask_tensor.unsqueeze(0) |
|
|
|
return None |
|
|
|
segs = [] |
|
|
|
def create_seg(label): |
|
mask = create_segment(image, parts[label]) |
|
if mask is not None: |
|
seg = mask_to_segs(mask, False, crop_factor, bbox_fill, drop_size=drop_size, label=label, crop_min_size=crop_min_size) |
|
if len(seg[1]) > 0: |
|
segs.append(seg[1][0]) |
|
|
|
if face: |
|
create_seg('face') |
|
|
|
if mouth: |
|
create_seg('mouth') |
|
|
|
if left_eyebrow: |
|
create_seg('left_eyebrow') |
|
|
|
if left_eye: |
|
create_seg('left_eye') |
|
|
|
if left_pupil: |
|
create_seg('left_pupil') |
|
|
|
if right_eyebrow: |
|
create_seg('right_eyebrow') |
|
|
|
if right_eye: |
|
create_seg('right_eye') |
|
|
|
if right_pupil: |
|
create_seg('right_pupil') |
|
|
|
return (image.shape[1], image.shape[2]), segs |
|
|
|
|
|
def segs_to_combined_mask(segs): |
|
shape = segs[0] |
|
h = shape[0] |
|
w = shape[1] |
|
|
|
mask = np.zeros((h, w), dtype=np.uint8) |
|
|
|
for seg in segs[1]: |
|
cropped_mask = seg.cropped_mask |
|
crop_region = seg.crop_region |
|
mask[crop_region[1]:crop_region[3], crop_region[0]:crop_region[2]] |= (cropped_mask * 255).astype(np.uint8) |
|
|
|
return torch.from_numpy(mask.astype(np.float32) / 255.0) |
|
|
|
|
|
def segs_to_masklist(segs): |
|
shape = segs[0] |
|
h = shape[0] |
|
w = shape[1] |
|
|
|
masks = [] |
|
for seg in segs[1]: |
|
mask = np.zeros((h, w), dtype=np.uint8) |
|
cropped_mask = seg.cropped_mask |
|
crop_region = seg.crop_region |
|
mask[crop_region[1]:crop_region[3], crop_region[0]:crop_region[2]] |= (cropped_mask * 255).astype(np.uint8) |
|
mask = torch.from_numpy(mask.astype(np.float32) / 255.0) |
|
masks.append(mask) |
|
|
|
if len(masks) == 0: |
|
empty_mask = torch.zeros((h, w), dtype=torch.float32, device="cpu") |
|
masks = [empty_mask] |
|
|
|
return masks |
|
|
|
|
|
def vae_decode(vae, samples, use_tile, hook, tile_size=512): |
|
if use_tile: |
|
pixels = nodes.VAEDecodeTiled().decode(vae, samples, tile_size)[0] |
|
else: |
|
pixels = nodes.VAEDecode().decode(vae, samples)[0] |
|
|
|
if hook is not None: |
|
pixels = hook.post_decode(pixels) |
|
|
|
return pixels |
|
|
|
|
|
def vae_encode(vae, pixels, use_tile, hook, tile_size=512): |
|
if use_tile: |
|
samples = nodes.VAEEncodeTiled().encode(vae, pixels, tile_size)[0] |
|
else: |
|
samples = nodes.VAEEncode().encode(vae, pixels)[0] |
|
|
|
if hook is not None: |
|
samples = hook.post_encode(samples) |
|
|
|
return samples |
|
|
|
|
|
class KSamplerWrapper: |
|
params = None |
|
|
|
def __init__(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise): |
|
self.params = model, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise |
|
|
|
def sample(self, latent_image, hook=None): |
|
model, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise = self.params |
|
|
|
if hook is not None: |
|
model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent, denoise = \ |
|
hook.pre_ksample(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, |
|
denoise) |
|
|
|
return nodes.common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, |
|
denoise=denoise)[0] |
|
|
|
|
|
class KSamplerAdvancedWrapper: |
|
params = None |
|
|
|
def __init__(self, model, cfg, sampler_name, scheduler, positive, negative): |
|
self.params = model, cfg, sampler_name, scheduler, positive, negative |
|
|
|
def sample_advanced(self, add_noise, seed, steps, latent_image, start_at_step, end_at_step, |
|
return_with_leftover_noise, hook=None, recover_special_sampler=False): |
|
model, cfg, sampler_name, scheduler, positive, negative = self.params |
|
|
|
if hook is not None: |
|
model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent = \ |
|
hook.pre_ksample_advanced(model, add_noise, seed, steps, cfg, sampler_name, scheduler, |
|
positive, negative, latent_image, start_at_step, end_at_step, |
|
return_with_leftover_noise) |
|
|
|
if recover_special_sampler and sampler_name in ['uni_pc', 'uni_pc_bh2', 'dpmpp_sde', 'dpmpp_sde_gpu', 'dpmpp_2m_sde', 'dpmpp_2m_sde_gpu', 'dpmpp_3m_sde', 'dpmpp_3m_sde_gpu']: |
|
base_image = latent_image.copy() |
|
else: |
|
base_image = None |
|
|
|
try: |
|
latent_image = nodes.KSamplerAdvanced().sample(model, add_noise, seed, steps, cfg, sampler_name, scheduler, |
|
positive, negative, latent_image, start_at_step, end_at_step, |
|
return_with_leftover_noise)[0] |
|
except ValueError as e: |
|
if str(e) == 'sigma_min and sigma_max must not be 0': |
|
print(f"\nWARN: sampling skipped - sigma_min and sigma_max are 0") |
|
return latent_image |
|
|
|
if recover_special_sampler and sampler_name in ['uni_pc', 'uni_pc_bh2', 'dpmpp_sde', 'dpmpp_sde_gpu', 'dpmpp_2m_sde', 'dpmpp_2m_sde_gpu', 'dpmpp_3m_sde', 'dpmpp_3m_sde_gpu']: |
|
compensate = 0 if sampler_name in ['uni_pc', 'uni_pc_bh2'] else 2 |
|
sampler_name = 'dpmpp_fast' if sampler_name in ['uni_pc', 'uni_pc_bh2', 'dpmpp_sde', 'dpmpp_sde_gpu'] else 'dpmpp_2m' |
|
latent_compositor = nodes.NODE_CLASS_MAPPINGS['LatentCompositeMasked']() |
|
|
|
noise_mask = latent_image['noise_mask'] |
|
|
|
if len(noise_mask.shape) == 4: |
|
noise_mask = noise_mask.squeeze(0).squeeze(0) |
|
|
|
latent_image = \ |
|
latent_compositor.composite(base_image, latent_image, 0, 0, False, noise_mask)[0] |
|
|
|
try: |
|
latent_image = nodes.KSamplerAdvanced().sample(model, add_noise, seed, steps, cfg, sampler_name, scheduler, |
|
positive, negative, latent_image, start_at_step-compensate, end_at_step, |
|
return_with_leftover_noise)[0] |
|
except ValueError as e: |
|
if str(e) == 'sigma_min and sigma_max must not be 0': |
|
print(f"\nWARN: sampling skipped - sigma_min and sigma_max are 0") |
|
|
|
return latent_image |
|
|
|
|
|
class PixelKSampleHook: |
|
cur_step = 0 |
|
total_step = 0 |
|
|
|
def __init__(self): |
|
pass |
|
|
|
def set_steps(self, info): |
|
self.cur_step, self.total_step = info |
|
|
|
def post_decode(self, pixels): |
|
return pixels |
|
|
|
def post_upscale(self, pixels): |
|
return pixels |
|
|
|
def post_encode(self, samples): |
|
return samples |
|
|
|
def pre_decode(self, samples): |
|
return samples |
|
|
|
def pre_ksample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent, |
|
denoise): |
|
return model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent, denoise |
|
|
|
def post_crop_region(self, w, h, item_bbox, crop_region): |
|
return crop_region |
|
|
|
def touch_scaled_size(self, w, h): |
|
return w, h |
|
|
|
|
|
class PixelKSampleHookCombine(PixelKSampleHook): |
|
hook1 = None |
|
hook2 = None |
|
|
|
def __init__(self, hook1, hook2): |
|
super().__init__() |
|
self.hook1 = hook1 |
|
self.hook2 = hook2 |
|
|
|
def set_steps(self, info): |
|
self.hook1.set_steps(info) |
|
self.hook2.set_steps(info) |
|
|
|
def post_decode(self, pixels): |
|
return self.hook2.post_decode(self.hook1.post_decode(pixels)) |
|
|
|
def post_upscale(self, pixels): |
|
return self.hook2.post_upscale(self.hook1.post_upscale(pixels)) |
|
|
|
def post_encode(self, samples): |
|
return self.hook2.post_encode(self.hook1.post_encode(samples)) |
|
|
|
def pre_ksample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent, |
|
denoise): |
|
model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent, denoise = \ |
|
self.hook1.pre_ksample(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, |
|
upscaled_latent, denoise) |
|
|
|
return self.hook2.pre_ksample(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, |
|
upscaled_latent, denoise) |
|
|
|
|
|
class SimpleCfgScheduleHook(PixelKSampleHook): |
|
target_cfg = 0 |
|
|
|
def __init__(self, target_cfg): |
|
super().__init__() |
|
self.target_cfg = target_cfg |
|
|
|
def pre_ksample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent, |
|
denoise): |
|
progress = self.cur_step / self.total_step |
|
gap = self.target_cfg - cfg |
|
current_cfg = cfg + gap * progress |
|
return model, seed, steps, current_cfg, sampler_name, scheduler, positive, negative, upscaled_latent, denoise |
|
|
|
|
|
class SimpleDenoiseScheduleHook(PixelKSampleHook): |
|
target_denoise = 0 |
|
|
|
def __init__(self, target_denoise): |
|
super().__init__() |
|
self.target_denoise = target_denoise |
|
|
|
def pre_ksample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent, |
|
denoise): |
|
progress = self.cur_step / self.total_step |
|
gap = self.target_denoise - denoise |
|
current_denoise = denoise + gap * progress |
|
return model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent, current_denoise |
|
|
|
|
|
def latent_upscale_on_pixel_space_shape(samples, scale_method, w, h, vae, use_tile=False, tile_size=512, |
|
save_temp_prefix=None, hook=None): |
|
pixels = vae_decode(vae, samples, use_tile, hook, tile_size=tile_size) |
|
|
|
if save_temp_prefix is not None: |
|
nodes.PreviewImage().save_images(pixels, filename_prefix=save_temp_prefix) |
|
|
|
pixels = nodes.ImageScale().upscale(pixels, scale_method, int(w), int(h), False)[0] |
|
|
|
if hook is not None: |
|
pixels = hook.post_upscale(pixels) |
|
|
|
return vae_encode(vae, pixels, use_tile, hook, tile_size=tile_size) |
|
|
|
|
|
def latent_upscale_on_pixel_space2(samples, scale_method, scale_factor, vae, use_tile=False, tile_size=512, |
|
save_temp_prefix=None, hook=None): |
|
pixels = vae_decode(vae, samples, use_tile, hook, tile_size=tile_size) |
|
|
|
if save_temp_prefix is not None: |
|
nodes.PreviewImage().save_images(pixels, filename_prefix=save_temp_prefix) |
|
|
|
w = pixels.shape[2] * scale_factor |
|
h = pixels.shape[1] * scale_factor |
|
pixels = nodes.ImageScale().upscale(pixels, scale_method, int(w), int(h), False)[0] |
|
|
|
if hook is not None: |
|
pixels = hook.post_upscale(pixels) |
|
|
|
return (vae_encode(vae, pixels, use_tile, hook, tile_size=tile_size), pixels) |
|
|
|
def latent_upscale_on_pixel_space(samples, scale_method, scale_factor, vae, use_tile=False, tile_size=512, |
|
save_temp_prefix=None, hook=None): |
|
return latent_upscale_on_pixel_space2(samples, scale_method, scale_factor, vae, use_tile, tile_size, save_temp_prefix, hook)[0] |
|
|
|
def latent_upscale_on_pixel_space_with_model_shape(samples, scale_method, upscale_model, new_w, new_h, vae, |
|
use_tile=False, tile_size=512, save_temp_prefix=None, hook=None): |
|
pixels = vae_decode(vae, samples, use_tile, hook, tile_size=tile_size) |
|
|
|
if save_temp_prefix is not None: |
|
nodes.PreviewImage().save_images(pixels, filename_prefix=save_temp_prefix) |
|
|
|
w = pixels.shape[2] |
|
|
|
|
|
current_w = w |
|
while current_w < new_w: |
|
pixels = model_upscale.ImageUpscaleWithModel().upscale(upscale_model, pixels)[0] |
|
current_w = pixels.shape[2] |
|
if current_w == w: |
|
print(f"[latent_upscale_on_pixel_space_with_model] x1 upscale model selected") |
|
break |
|
|
|
|
|
pixels = nodes.ImageScale().upscale(pixels, scale_method, int(new_w), int(new_h), False)[0] |
|
|
|
if hook is not None: |
|
pixels = hook.post_upscale(pixels) |
|
|
|
return vae_encode(vae, pixels, use_tile, hook, tile_size=tile_size) |
|
|
|
|
|
def latent_upscale_on_pixel_space_with_model2(samples, scale_method, upscale_model, scale_factor, vae, use_tile=False, |
|
tile_size=512, save_temp_prefix=None, hook=None): |
|
pixels = vae_decode(vae, samples, use_tile, hook, tile_size=tile_size) |
|
|
|
if save_temp_prefix is not None: |
|
nodes.PreviewImage().save_images(pixels, filename_prefix=save_temp_prefix) |
|
|
|
w = pixels.shape[2] |
|
h = pixels.shape[1] |
|
|
|
new_w = w * scale_factor |
|
new_h = h * scale_factor |
|
|
|
|
|
current_w = w |
|
while current_w < new_w: |
|
pixels = model_upscale.ImageUpscaleWithModel().upscale(upscale_model, pixels)[0] |
|
current_w = pixels.shape[2] |
|
if current_w == w: |
|
print(f"[latent_upscale_on_pixel_space_with_model] x1 upscale model selected") |
|
break |
|
|
|
|
|
pixels = nodes.ImageScale().upscale(pixels, scale_method, int(new_w), int(new_h), False)[0] |
|
|
|
if hook is not None: |
|
pixels = hook.post_upscale(pixels) |
|
|
|
return (vae_encode(vae, pixels, use_tile, hook, tile_size=tile_size), pixels) |
|
|
|
def latent_upscale_on_pixel_space_with_model(samples, scale_method, upscale_model, scale_factor, vae, use_tile=False, |
|
tile_size=512, save_temp_prefix=None, hook=None): |
|
return latent_upscale_on_pixel_space_with_model2(samples, scale_method, upscale_model, scale_factor, vae, use_tile, tile_size, save_temp_prefix, hook)[0] |
|
|
|
class TwoSamplersForMaskUpscaler: |
|
params = None |
|
upscale_model = None |
|
hook_base = None |
|
hook_mask = None |
|
hook_full = None |
|
use_tiled_vae = False |
|
is_tiled = False |
|
tile_size = 512 |
|
|
|
def __init__(self, scale_method, sample_schedule, use_tiled_vae, base_sampler, mask_sampler, mask, vae, |
|
full_sampler_opt=None, upscale_model_opt=None, hook_base_opt=None, hook_mask_opt=None, |
|
hook_full_opt=None, |
|
tile_size=512): |
|
|
|
if len(mask.shape) == 3: |
|
mask = mask.squeeze(0) |
|
|
|
mask = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])) |
|
|
|
self.params = scale_method, sample_schedule, use_tiled_vae, base_sampler, mask_sampler, mask, vae |
|
self.upscale_model = upscale_model_opt |
|
self.full_sampler = full_sampler_opt |
|
self.hook_base = hook_base_opt |
|
self.hook_mask = hook_mask_opt |
|
self.hook_full = hook_full_opt |
|
self.use_tiled_vae = use_tiled_vae |
|
self.tile_size = tile_size |
|
|
|
def upscale(self, step_info, samples, upscale_factor, save_temp_prefix=None): |
|
scale_method, sample_schedule, use_tiled_vae, base_sampler, mask_sampler, mask, vae = self.params |
|
|
|
if len(mask.shape) == 3: |
|
mask = mask.squeeze(0) |
|
|
|
self.prepare_hook(step_info) |
|
|
|
|
|
if self.upscale_model is None: |
|
upscaled_latent = latent_upscale_on_pixel_space(samples, scale_method, upscale_factor, vae, |
|
use_tile=self.use_tiled_vae, |
|
save_temp_prefix=save_temp_prefix, |
|
hook=self.hook_base, tile_size=self.tile_size) |
|
else: |
|
upscaled_latent = latent_upscale_on_pixel_space_with_model(samples, scale_method, self.upscale_model, |
|
upscale_factor, vae, |
|
use_tile=self.use_tiled_vae, |
|
save_temp_prefix=save_temp_prefix, |
|
hook=self.hook_mask, tile_size=self.tile_size) |
|
|
|
return self.do_samples(step_info, base_sampler, mask_sampler, sample_schedule, mask, upscaled_latent) |
|
|
|
def prepare_hook(self, step_info): |
|
if self.hook_base is not None: |
|
self.hook_base.set_steps(step_info) |
|
if self.hook_mask is not None: |
|
self.hook_mask.set_steps(step_info) |
|
if self.hook_full is not None: |
|
self.hook_full.set_steps(step_info) |
|
|
|
def upscale_shape(self, step_info, samples, w, h, save_temp_prefix=None): |
|
scale_method, sample_schedule, use_tiled_vae, base_sampler, mask_sampler, mask, vae = self.params |
|
|
|
if len(mask.shape) == 3: |
|
mask = mask.squeeze(0) |
|
|
|
self.prepare_hook(step_info) |
|
|
|
|
|
if self.upscale_model is None: |
|
upscaled_latent = latent_upscale_on_pixel_space_shape(samples, scale_method, w, h, vae, |
|
use_tile=self.use_tiled_vae, |
|
save_temp_prefix=save_temp_prefix, |
|
hook=self.hook_base, |
|
tile_size=self.tile_size) |
|
else: |
|
upscaled_latent = latent_upscale_on_pixel_space_with_model_shape(samples, scale_method, self.upscale_model, |
|
w, h, vae, |
|
use_tile=self.use_tiled_vae, |
|
save_temp_prefix=save_temp_prefix, |
|
hook=self.hook_mask, |
|
tile_size=self.tile_size) |
|
|
|
return self.do_samples(step_info, base_sampler, mask_sampler, sample_schedule, mask, upscaled_latent) |
|
|
|
def is_full_sample_time(self, step_info, sample_schedule): |
|
cur_step, total_step = step_info |
|
|
|
|
|
cur_step += 1 |
|
total_step += 1 |
|
|
|
if sample_schedule == "none": |
|
return False |
|
|
|
elif sample_schedule == "interleave1": |
|
return cur_step % 2 == 0 |
|
|
|
elif sample_schedule == "interleave2": |
|
return cur_step % 3 == 0 |
|
|
|
elif sample_schedule == "interleave3": |
|
return cur_step % 4 == 0 |
|
|
|
elif sample_schedule == "last1": |
|
return cur_step == total_step |
|
|
|
elif sample_schedule == "last2": |
|
return cur_step >= total_step - 1 |
|
|
|
elif sample_schedule == "interleave1+last1": |
|
return cur_step % 2 == 0 or cur_step >= total_step - 1 |
|
|
|
elif sample_schedule == "interleave2+last1": |
|
return cur_step % 2 == 0 or cur_step >= total_step - 1 |
|
|
|
elif sample_schedule == "interleave3+last1": |
|
return cur_step % 2 == 0 or cur_step >= total_step - 1 |
|
|
|
def do_samples(self, step_info, base_sampler, mask_sampler, sample_schedule, mask, upscaled_latent): |
|
if len(mask.shape) == 3: |
|
mask = mask.squeeze(0) |
|
|
|
if self.is_full_sample_time(step_info, sample_schedule): |
|
print(f"step_info={step_info} / full time") |
|
|
|
upscaled_latent = base_sampler.sample(upscaled_latent, self.hook_base) |
|
sampler = self.full_sampler if self.full_sampler is not None else base_sampler |
|
return sampler.sample(upscaled_latent, self.hook_full) |
|
|
|
else: |
|
print(f"step_info={step_info} / non-full time") |
|
|
|
upscaled_mask = F.interpolate(mask, size=( |
|
upscaled_latent['samples'].shape[2], upscaled_latent['samples'].shape[3]), |
|
mode='bilinear', align_corners=True) |
|
upscaled_mask = upscaled_mask[:, :, :upscaled_latent['samples'].shape[2], |
|
:upscaled_latent['samples'].shape[3]] |
|
|
|
|
|
upscaled_inv_mask = torch.where(upscaled_mask != 1.0, torch.tensor(1.0), torch.tensor(0.0)) |
|
upscaled_latent['noise_mask'] = upscaled_inv_mask |
|
upscaled_latent = base_sampler.sample(upscaled_latent, self.hook_base) |
|
|
|
|
|
upscaled_latent['noise_mask'] = upscaled_mask |
|
upscaled_latent = mask_sampler.sample(upscaled_latent, self.hook_mask) |
|
|
|
|
|
del upscaled_latent['noise_mask'] |
|
return upscaled_latent |
|
|
|
|
|
class PixelKSampleUpscaler: |
|
params = None |
|
upscale_model = None |
|
hook = None |
|
use_tiled_vae = False |
|
is_tiled = False |
|
tile_size = 512 |
|
|
|
def __init__(self, scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise, |
|
use_tiled_vae, upscale_model_opt=None, hook_opt=None, tile_size=512): |
|
self.params = scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise |
|
self.upscale_model = upscale_model_opt |
|
self.hook = hook_opt |
|
self.use_tiled_vae = use_tiled_vae |
|
self.tile_size = tile_size |
|
|
|
def upscale(self, step_info, samples, upscale_factor, save_temp_prefix=None): |
|
scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise = self.params |
|
|
|
if self.hook is not None: |
|
self.hook.set_steps(step_info) |
|
|
|
if self.upscale_model is None: |
|
upscaled_latent = latent_upscale_on_pixel_space(samples, scale_method, upscale_factor, vae, |
|
use_tile=self.use_tiled_vae, |
|
save_temp_prefix=save_temp_prefix, hook=self.hook) |
|
else: |
|
upscaled_latent = latent_upscale_on_pixel_space_with_model(samples, scale_method, self.upscale_model, |
|
upscale_factor, vae, |
|
use_tile=self.use_tiled_vae, |
|
save_temp_prefix=save_temp_prefix, |
|
hook=self.hook, |
|
tile_size=self.tile_size) |
|
|
|
if self.hook is not None: |
|
model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent, denoise = \ |
|
self.hook.pre_ksample(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, |
|
upscaled_latent, denoise) |
|
|
|
refined_latent = nodes.KSampler().sample(model, seed, steps, cfg, sampler_name, scheduler, |
|
positive, negative, upscaled_latent, denoise)[0] |
|
return refined_latent |
|
|
|
def upscale_shape(self, step_info, samples, w, h, save_temp_prefix=None): |
|
scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise = self.params |
|
|
|
if self.hook is not None: |
|
self.hook.set_steps(step_info) |
|
|
|
if self.upscale_model is None: |
|
upscaled_latent = latent_upscale_on_pixel_space_shape(samples, scale_method, w, h, vae, |
|
use_tile=self.use_tiled_vae, |
|
save_temp_prefix=save_temp_prefix, hook=self.hook, |
|
tile_size=self.tile_size) |
|
else: |
|
upscaled_latent = latent_upscale_on_pixel_space_with_model_shape(samples, scale_method, self.upscale_model, |
|
w, h, vae, |
|
use_tile=self.use_tiled_vae, |
|
save_temp_prefix=save_temp_prefix, |
|
hook=self.hook, |
|
tile_size=self.tile_size) |
|
|
|
if self.hook is not None: |
|
model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent, denoise = \ |
|
self.hook.pre_ksample(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, |
|
upscaled_latent, denoise) |
|
|
|
refined_latent = nodes.KSampler().sample(model, seed, steps, cfg, sampler_name, scheduler, |
|
positive, negative, upscaled_latent, denoise)[0] |
|
return refined_latent |
|
|
|
|
|
class ControlNetWrapper: |
|
def __init__(self, control_net, strength, preprocessor): |
|
self.control_net = control_net |
|
self.strength = strength |
|
self.preprocessor = preprocessor |
|
self.image = None |
|
|
|
def apply(self, conditioning, image, mask=None): |
|
if self.preprocessor is not None: |
|
image = self.preprocessor.apply(image, mask) |
|
|
|
return nodes.ControlNetApply().apply_controlnet(conditioning, self.control_net, image, self.strength)[0], image |
|
|
|
|
|
class CoreMLHook(PixelKSampleHook): |
|
def __init__(self, mode): |
|
super().__init__() |
|
resolution = mode.split('x') |
|
|
|
self.w = int(resolution[0]) |
|
self.h = int(resolution[1]) |
|
|
|
self.override_bbox_by_segm = False |
|
|
|
def pre_decode(self, samples): |
|
new_samples = copy.deepcopy(samples) |
|
new_samples['samples'] = samples['samples'][0].unsqueeze(0) |
|
return new_samples |
|
|
|
def post_encode(self, samples): |
|
new_samples = copy.deepcopy(samples) |
|
new_samples['samples'] = samples['samples'].repeat(2, 1, 1, 1) |
|
return new_samples |
|
|
|
def post_crop_region(self, w, h, item_bbox, crop_region): |
|
x1, y1, x2, y2 = crop_region |
|
bx1, by1, bx2, by2 = item_bbox |
|
crop_w = x2-x1 |
|
crop_h = y2-y1 |
|
|
|
crop_ratio = crop_w/crop_h |
|
target_ratio = self.w/self.h |
|
if crop_ratio < target_ratio: |
|
|
|
top_gap = by1 - y1 |
|
bottom_gap = y2 - by2 |
|
|
|
gap_ratio = top_gap / bottom_gap |
|
|
|
target_height = 1/target_ratio*crop_w |
|
delta_height = crop_h - target_height |
|
|
|
new_y1 = int(y1 + delta_height*gap_ratio) |
|
new_y2 = int(new_y1 + target_height) |
|
crop_region = x1, new_y1, x2, new_y2 |
|
|
|
elif crop_ratio > target_ratio: |
|
|
|
left_gap = bx1 - x1 |
|
right_gap = x2 - bx2 |
|
|
|
gap_ratio = left_gap / right_gap |
|
|
|
target_width = target_ratio*crop_h |
|
delta_width = crop_w - target_width |
|
|
|
new_x1 = int(x1 + delta_width*gap_ratio) |
|
new_x2 = int(new_x1 + target_width) |
|
crop_region = new_x1, y1, new_x2, y2 |
|
|
|
return crop_region |
|
|
|
def touch_scaled_size(self, w, h): |
|
return self.w, self.h |
|
|
|
|
|
|
|
class InjectNoiseHook(PixelKSampleHook): |
|
def __init__(self, source, seed, start_strength, end_strength): |
|
super().__init__() |
|
self.source = source |
|
self.seed = seed |
|
self.start_strength = start_strength |
|
self.end_strength = end_strength |
|
|
|
def post_encode(self, samples, seed_idx=0): |
|
|
|
size = samples['samples'].shape |
|
seed = self.cur_step + self.seed + seed_idx |
|
|
|
if "BNK_NoisyLatentImage" in nodes.NODE_CLASS_MAPPINGS and "BNK_InjectNoise" in nodes.NODE_CLASS_MAPPINGS: |
|
NoisyLatentImage = nodes.NODE_CLASS_MAPPINGS["BNK_NoisyLatentImage"] |
|
InjectNoise = nodes.NODE_CLASS_MAPPINGS["BNK_InjectNoise"] |
|
else: |
|
raise Exception("'BNK_NoisyLatentImage', 'BNK_InjectNoise' nodes are not installed.") |
|
|
|
noise = NoisyLatentImage().create_noisy_latents(self.source, seed, size[3] * 8, size[2] * 8, size[0])[0] |
|
|
|
|
|
mask = None |
|
if 'noise_mask' in samples: |
|
mask = samples['noise_mask'] |
|
|
|
strength = self.start_strength + (self.end_strength - self.start_strength) * self.cur_step / self.total_step |
|
samples = InjectNoise().inject_noise(samples, strength, noise, mask)[0] |
|
|
|
if mask is not None: |
|
samples['noise_mask'] = mask |
|
|
|
return samples |
|
|
|
def cycle_latent(self, i, latent): |
|
if i == 0: |
|
return latent |
|
else: |
|
return self.post_encode(latent, i) |
|
|
|
|
|
|
|
class TiledKSamplerWrapper: |
|
params = None |
|
|
|
def __init__(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise, |
|
tile_width, tile_height, tiling_strategy): |
|
self.params = model, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise, tile_width, tile_height, tiling_strategy |
|
|
|
def sample(self, latent_image, hook=None): |
|
if "BNK_TiledKSampler" in nodes.NODE_CLASS_MAPPINGS: |
|
TiledKSampler = nodes.NODE_CLASS_MAPPINGS['BNK_TiledKSampler'] |
|
else: |
|
raise Exception("'BNK_TiledKSampler' node isn't installed.") |
|
|
|
model, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise, tile_width, tile_height, tiling_strategy = self.params |
|
|
|
if hook is not None: |
|
model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent, denoise = \ |
|
hook.pre_ksample(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, |
|
denoise) |
|
|
|
return \ |
|
TiledKSampler().sample(model, seed, tile_width, tile_height, tiling_strategy, steps, cfg, sampler_name, |
|
scheduler, |
|
positive, negative, latent_image, denoise)[0] |
|
|
|
|
|
class PixelTiledKSampleUpscaler: |
|
params = None |
|
upscale_model = None |
|
tile_params = None |
|
hook = None |
|
is_tiled = True |
|
tile_size = 512 |
|
|
|
def __init__(self, scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, |
|
denoise, |
|
tile_width, tile_height, tiling_strategy, |
|
upscale_model_opt=None, hook_opt=None, tile_size=512): |
|
self.params = scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise |
|
self.tile_params = tile_width, tile_height, tiling_strategy |
|
self.upscale_model = upscale_model_opt |
|
self.hook = hook_opt |
|
self.tile_size = tile_size |
|
|
|
def tiled_ksample(self, latent): |
|
if "BNK_TiledKSampler" in nodes.NODE_CLASS_MAPPINGS: |
|
TiledKSampler = nodes.NODE_CLASS_MAPPINGS['BNK_TiledKSampler'] |
|
else: |
|
raise Exception("'BNK_TiledKSampler' node isn't installed.") |
|
|
|
scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise = self.params |
|
tile_width, tile_height, tiling_strategy = self.tile_params |
|
|
|
return \ |
|
TiledKSampler().sample(model, seed, tile_width, tile_height, tiling_strategy, steps, cfg, sampler_name, |
|
scheduler, |
|
positive, negative, latent, denoise)[0] |
|
|
|
def upscale(self, step_info, samples, upscale_factor, save_temp_prefix=None): |
|
scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise = self.params |
|
|
|
if self.hook is not None: |
|
self.hook.set_steps(step_info) |
|
|
|
if self.upscale_model is None: |
|
upscaled_latent = latent_upscale_on_pixel_space(samples, scale_method, upscale_factor, vae, |
|
use_tile=True, save_temp_prefix=save_temp_prefix, |
|
hook=self.hook, |
|
tile_size=self.tile_size) |
|
else: |
|
upscaled_latent = latent_upscale_on_pixel_space_with_model(samples, scale_method, self.upscale_model, |
|
upscale_factor, vae, |
|
use_tile=True, |
|
save_temp_prefix=save_temp_prefix, |
|
hook=self.hook, |
|
tile_size=self.tile_size) |
|
|
|
refined_latent = self.tiled_ksample(upscaled_latent) |
|
|
|
return refined_latent |
|
|
|
def upscale_shape(self, step_info, samples, w, h, save_temp_prefix=None): |
|
scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise = self.params |
|
|
|
if self.hook is not None: |
|
self.hook.set_steps(step_info) |
|
|
|
if self.upscale_model is None: |
|
upscaled_latent = latent_upscale_on_pixel_space_shape(samples, scale_method, w, h, vae, |
|
use_tile=True, save_temp_prefix=save_temp_prefix, |
|
hook=self.hook, tile_size=self.tile_size) |
|
else: |
|
upscaled_latent = latent_upscale_on_pixel_space_with_model_shape(samples, scale_method, |
|
self.upscale_model, w, h, vae, |
|
use_tile=True, |
|
save_temp_prefix=save_temp_prefix, |
|
hook=self.hook, |
|
tile_size=self.tile_size) |
|
|
|
refined_latent = self.tiled_ksample(upscaled_latent) |
|
|
|
return refined_latent |
|
|
|
|
|
|
|
class BBoxDetectorBasedOnCLIPSeg: |
|
prompt = None |
|
blur = None |
|
threshold = None |
|
dilation_factor = None |
|
aux = None |
|
|
|
def __init__(self, prompt, blur, threshold, dilation_factor): |
|
self.prompt = prompt |
|
self.blur = blur |
|
self.threshold = threshold |
|
self.dilation_factor = dilation_factor |
|
|
|
def detect(self, image, bbox_threshold, bbox_dilation, bbox_crop_factor, drop_size=1, detailer_hook=None): |
|
mask = self.detect_combined(image, bbox_threshold, bbox_dilation) |
|
|
|
if len(mask.shape) == 3: |
|
mask = mask.squeeze(0) |
|
|
|
segs = mask_to_segs(mask, False, bbox_crop_factor, True, drop_size, detailer_hook=detailer_hook) |
|
return segs |
|
|
|
def detect_combined(self, image, bbox_threshold, bbox_dilation): |
|
if "CLIPSeg" in nodes.NODE_CLASS_MAPPINGS: |
|
CLIPSeg = nodes.NODE_CLASS_MAPPINGS['CLIPSeg'] |
|
else: |
|
raise Exception("'CLIPSeg' node isn't installed.") |
|
|
|
if self.threshold is None: |
|
threshold = bbox_threshold |
|
else: |
|
threshold = self.threshold |
|
|
|
if self.dilation_factor is None: |
|
dilation_factor = bbox_dilation |
|
else: |
|
dilation_factor = self.dilation_factor |
|
|
|
prompt = self.aux if self.prompt == '' and self.aux is not None else self.prompt |
|
|
|
mask, _, _ = CLIPSeg().segment_image(image, prompt, self.blur, threshold, dilation_factor) |
|
mask = to_binary_mask(mask) |
|
return mask |
|
|
|
def setAux(self, x): |
|
self.aux = x |
|
|
|
|
|
def update_node_status(node, text, progress=None): |
|
if PromptServer.instance.client_id is None: |
|
return |
|
|
|
PromptServer.instance.send_sync("impact/update_status", { |
|
"node": node, |
|
"progress": progress, |
|
"text": text |
|
}, PromptServer.instance.client_id) |
|
|
|
|
|
from comfy.cli_args import args, LatentPreviewMethod |
|
import folder_paths |
|
from latent_preview import TAESD, TAESDPreviewerImpl, Latent2RGBPreviewer |
|
|
|
try: |
|
import comfy.latent_formats as latent_formats |
|
|
|
|
|
def get_previewer(device, latent_format=latent_formats.SD15(), force=False, method=None): |
|
previewer = None |
|
|
|
if method is None: |
|
method = args.preview_method |
|
|
|
if method != LatentPreviewMethod.NoPreviews or force: |
|
|
|
taesd_decoder_path = folder_paths.get_full_path("vae_approx", latent_format.taesd_decoder_name) |
|
|
|
if method == LatentPreviewMethod.Auto: |
|
method = LatentPreviewMethod.Latent2RGB |
|
if taesd_decoder_path: |
|
method = LatentPreviewMethod.TAESD |
|
|
|
if method == LatentPreviewMethod.TAESD: |
|
if taesd_decoder_path: |
|
taesd = TAESD(None, taesd_decoder_path).to(device) |
|
previewer = TAESDPreviewerImpl(taesd) |
|
else: |
|
print("Warning: TAESD previews enabled, but could not find models/vae_approx/{}".format( |
|
latent_format.taesd_decoder_name)) |
|
|
|
if previewer is None: |
|
previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors) |
|
return previewer |
|
|
|
except: |
|
print(f"#########################################################################") |
|
print(f"[ERROR] ComfyUI-Impact-Pack: Please update ComfyUI to the latest version.") |
|
print(f"#########################################################################") |
|
|