StupidGame's picture
Upload 1941 files
baa8e90
import os
import sys
import comfy.samplers
import comfy.sd
import warnings
from segment_anything import sam_model_registry
from io import BytesIO
import piexif
import zipfile
import re
import impact.wildcards
from impact.utils import *
import impact.core as core
from impact.core import SEG
from impact.config import MAX_RESOLUTION, latent_letter_path
from PIL import Image, ImageOps
import numpy as np
import hashlib
import json
import safetensors.torch
from PIL.PngImagePlugin import PngInfo
import comfy.model_management
import base64
import impact.wildcards as wildcards
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
model_path = folder_paths.models_dir
# folder_paths.supported_pt_extensions
add_folder_path_and_extensions("mmdets_bbox", [os.path.join(model_path, "mmdets", "bbox")], folder_paths.supported_pt_extensions)
add_folder_path_and_extensions("mmdets_segm", [os.path.join(model_path, "mmdets", "segm")], folder_paths.supported_pt_extensions)
add_folder_path_and_extensions("mmdets", [os.path.join(model_path, "mmdets")], folder_paths.supported_pt_extensions)
add_folder_path_and_extensions("sams", [os.path.join(model_path, "sams")], folder_paths.supported_pt_extensions)
add_folder_path_and_extensions("onnx", [os.path.join(model_path, "onnx")], {'.onnx'})
# Nodes
class ONNXDetectorProvider:
@classmethod
def INPUT_TYPES(s):
return {"required": {"model_name": (folder_paths.get_filename_list("onnx"), )}}
RETURN_TYPES = ("BBOX_DETECTOR", )
FUNCTION = "load_onnx"
CATEGORY = "ImpactPack"
def load_onnx(self, model_name):
model = folder_paths.get_full_path("onnx", model_name)
return (core.ONNXDetector(model), )
class CLIPSegDetectorProvider:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"text": ("STRING", {"multiline": False}),
"blur": ("FLOAT", {"min": 0, "max": 15, "step": 0.1, "default": 7}),
"threshold": ("FLOAT", {"min": 0, "max": 1, "step": 0.05, "default": 0.4}),
"dilation_factor": ("INT", {"min": 0, "max": 10, "step": 1, "default": 4}),
}
}
RETURN_TYPES = ("BBOX_DETECTOR", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Util"
def doit(self, text, blur, threshold, dilation_factor):
if "CLIPSeg" in nodes.NODE_CLASS_MAPPINGS:
return (core.BBoxDetectorBasedOnCLIPSeg(text, blur, threshold, dilation_factor), )
else:
print("[ERROR] CLIPSegToBboxDetector: CLIPSeg custom node isn't installed. You must install biegert/ComfyUI-CLIPSeg extension to use this node.")
class SAMLoader:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model_name": (folder_paths.get_filename_list("sams"), ),
"device_mode": (["AUTO", "Prefer GPU", "CPU"],),
}
}
RETURN_TYPES = ("SAM_MODEL", )
FUNCTION = "load_model"
CATEGORY = "ImpactPack"
def load_model(self, model_name, device_mode="auto"):
modelname = folder_paths.get_full_path("sams", model_name)
if 'vit_h' in model_name:
model_kind = 'vit_h'
elif 'vit_l' in model_name:
model_kind = 'vit_l'
else:
model_kind = 'vit_b'
sam = sam_model_registry[model_kind](checkpoint=modelname)
# Unless user explicitly wants to use CPU, we use GPU
device = comfy.model_management.get_torch_device() if device_mode == "Prefer GPU" else "CPU"
if device_mode == "Prefer GPU":
sam.to(device=device)
sam.is_auto_mode = device_mode == "AUTO"
print(f"Loads SAM model: {modelname} (device:{device_mode})")
return (sam, )
class ONNXDetectorForEach:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"onnx_detector": ("ONNX_DETECTOR",),
"image": ("IMAGE",),
"threshold": ("FLOAT", {"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.01}),
"dilation": ("INT", {"default": 10, "min": -512, "max": 512, "step": 1}),
"crop_factor": ("FLOAT", {"default": 1.0, "min": 0.5, "max": 100, "step": 0.1}),
"drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}),
}
}
RETURN_TYPES = ("SEGS", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detector"
OUTPUT_NODE = True
def doit(self, onnx_detector, image, threshold, dilation, crop_factor, drop_size):
segs = onnx_detector.detect(image, threshold, dilation, crop_factor, drop_size)
return (segs, )
class DetailerForEach:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE", ),
"segs": ("SEGS", ),
"model": ("MODEL",),
"clip": ("CLIP",),
"vae": ("VAE",),
"guide_size": ("FLOAT", {"default": 256, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"guide_size_for": ("BOOLEAN", {"default": True, "label_on": "bbox", "label_off": "crop_region"}),
"max_size": ("FLOAT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS,),
"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}),
"feather": ("INT", {"default": 5, "min": 0, "max": 100, "step": 1}),
"noise_mask": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"force_inpaint": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"wildcard": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"cycle": ("INT", {"default": 1, "min": 1, "max": 10, "step": 1}),
},
"optional": {"detailer_hook": ("DETAILER_HOOK",), }
}
RETURN_TYPES = ("IMAGE", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detailer"
@staticmethod
def do_detail(image, segs, model, clip, vae, guide_size, guide_size_for_bbox, max_size, seed, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, feather, noise_mask, force_inpaint, wildcard_opt=None, detailer_hook=None,
refiner_ratio=None, refiner_model=None, refiner_clip=None, refiner_positive=None, refiner_negative=None, cycle=1):
image_pil = tensor2pil(image).convert('RGBA')
enhanced_alpha_list = []
enhanced_list = []
cropped_list = []
cnet_pil_list = []
segs = core.segs_scale_match(segs, image.shape)
new_segs = []
if wildcard_opt is not None:
wmode, wildcard_chooser = wildcards.process_wildcard_for_segs(wildcard_opt)
else:
wmode, wildcard_chooser = None, None
if wmode in ['ASC', 'DSC']:
if wmode == 'ASC':
ordered_segs = sorted(segs[1], key=lambda x: (x.bbox[0], x.bbox[1]))
else:
ordered_segs = sorted(segs[1], key=lambda x: (x.bbox[0], x.bbox[1]), reverse=True)
else:
ordered_segs = segs[1]
for seg in ordered_segs:
cropped_image = seg.cropped_image if seg.cropped_image is not None \
else crop_ndarray4(image.numpy(), seg.crop_region)
mask_pil = feather_mask(seg.cropped_mask, feather)
is_mask_all_zeros = (seg.cropped_mask == 0).all().item()
if is_mask_all_zeros:
print(f"Detailer: segment skip [empty mask]")
continue
if noise_mask:
cropped_mask = seg.cropped_mask
else:
cropped_mask = None
if wildcard_chooser is not None:
wildcard_item = wildcard_chooser.get(seg)
else:
wildcard_item = None
enhanced_pil, cnet_pil = core.enhance_detail(cropped_image, model, clip, vae, guide_size, guide_size_for_bbox, max_size,
seg.bbox, seed, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, cropped_mask, force_inpaint, wildcard_item, detailer_hook,
refiner_ratio=refiner_ratio, refiner_model=refiner_model,
refiner_clip=refiner_clip, refiner_positive=refiner_positive,
refiner_negative=refiner_negative, control_net_wrapper=seg.control_net_wrapper, cycle=cycle)
if cnet_pil is not None:
cnet_pil_list.append(cnet_pil)
if not (enhanced_pil is None):
# don't latent composite-> converting to latent caused poor quality
# use image paste
image_pil.paste(enhanced_pil, (seg.crop_region[0], seg.crop_region[1]), mask_pil)
enhanced_list.append(pil2tensor(enhanced_pil))
if not (enhanced_pil is None):
# Convert enhanced_pil_alpha to RGBA mode
enhanced_pil_alpha = enhanced_pil.copy().convert('RGBA')
# Apply the mask
mask_array = seg.cropped_mask.astype(np.uint8) * 255
mask_image = Image.fromarray(mask_array, mode='L').resize(enhanced_pil_alpha.size)
enhanced_pil_alpha.putalpha(mask_image)
enhanced_alpha_list.append(pil2tensor(enhanced_pil_alpha))
new_seg_pil = pil2numpy(enhanced_pil)
else:
new_seg_pil = None
cropped_list.append(torch.from_numpy(cropped_image))
new_seg = SEG(new_seg_pil, seg.cropped_mask, seg.confidence, seg.crop_region, seg.bbox, seg.label, None)
new_segs.append(new_seg)
image_tensor = pil2tensor(image_pil.convert('RGB'))
cropped_list.sort(key=lambda x: x.shape, reverse=True)
enhanced_list.sort(key=lambda x: x.shape, reverse=True)
enhanced_alpha_list.sort(key=lambda x: x.shape, reverse=True)
return image_tensor, cropped_list, enhanced_list, enhanced_alpha_list, cnet_pil_list, (segs[0], new_segs)
def doit(self, image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name,
scheduler, positive, negative, denoise, feather, noise_mask, force_inpaint, wildcard, cycle=1, detailer_hook=None):
enhanced_img, cropped, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list, new_segs = \
DetailerForEach.do_detail(image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps,
cfg, sampler_name, scheduler, positive, negative, denoise, feather, noise_mask,
force_inpaint, wildcard, detailer_hook, cycle=cycle)
return (enhanced_img, )
class DetailerForEachPipe:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE", ),
"segs": ("SEGS", ),
"guide_size": ("FLOAT", {"default": 256, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"guide_size_for": ("BOOLEAN", {"default": True, "label_on": "bbox", "label_off": "crop_region"}),
"max_size": ("FLOAT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS,),
"denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}),
"feather": ("INT", {"default": 5, "min": 0, "max": 100, "step": 1}),
"noise_mask": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"force_inpaint": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"basic_pipe": ("BASIC_PIPE", ),
"wildcard": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"refiner_ratio": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0}),
"cycle": ("INT", {"default": 1, "min": 1, "max": 10, "step": 1}),
},
"optional": {
"detailer_hook": ("DETAILER_HOOK",),
"refiner_basic_pipe_opt": ("BASIC_PIPE",),
}
}
RETURN_TYPES = ("IMAGE", "SEGS", "BASIC_PIPE", "IMAGE")
RETURN_NAMES = ("image", "segs", "basic_pipe", "cnet_images")
OUTPUT_IS_LIST = (False, False, False, True)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detailer"
def doit(self, image, segs, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler,
denoise, feather, noise_mask, force_inpaint, basic_pipe, wildcard,
refiner_ratio=None, detailer_hook=None, refiner_basic_pipe_opt=None, cycle=1):
model, clip, vae, positive, negative = basic_pipe
if refiner_basic_pipe_opt is None:
refiner_model, refiner_clip, refiner_positive, refiner_negative = None, None, None, None
else:
refiner_model, refiner_clip, _, refiner_positive, refiner_negative = refiner_basic_pipe_opt
enhanced_img, cropped, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list, new_segs = \
DetailerForEach.do_detail(image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, cfg,
sampler_name, scheduler, positive, negative, denoise, feather, noise_mask,
force_inpaint, wildcard, detailer_hook,
refiner_ratio=refiner_ratio, refiner_model=refiner_model,
refiner_clip=refiner_clip, refiner_positive=refiner_positive, refiner_negative=refiner_negative,
cycle=cycle)
# set fallback image
if len(cnet_pil_list) == 0:
cnet_pil_list = [empty_pil_tensor()]
return (enhanced_img, new_segs, basic_pipe, cnet_pil_list)
class FaceDetailer:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE", ),
"model": ("MODEL",),
"clip": ("CLIP",),
"vae": ("VAE",),
"guide_size": ("FLOAT", {"default": 256, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"guide_size_for": ("BOOLEAN", {"default": True, "label_on": "bbox", "label_off": "crop_region"}),
"max_size": ("FLOAT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS,),
"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}),
"feather": ("INT", {"default": 5, "min": 0, "max": 100, "step": 1}),
"noise_mask": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"force_inpaint": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"bbox_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"bbox_dilation": ("INT", {"default": 10, "min": -512, "max": 512, "step": 1}),
"bbox_crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 10, "step": 0.1}),
"sam_detection_hint": (["center-1", "horizontal-2", "vertical-2", "rect-4", "diamond-4", "mask-area", "mask-points", "mask-point-bbox", "none"],),
"sam_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
"sam_threshold": ("FLOAT", {"default": 0.93, "min": 0.0, "max": 1.0, "step": 0.01}),
"sam_bbox_expansion": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}),
"sam_mask_hint_threshold": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
"sam_mask_hint_use_negative": (["False", "Small", "Outter"],),
"drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}),
"bbox_detector": ("BBOX_DETECTOR", ),
"wildcard": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"cycle": ("INT", {"default": 1, "min": 1, "max": 10, "step": 1}),
},
"optional": {
"sam_model_opt": ("SAM_MODEL", ),
"segm_detector_opt": ("SEGM_DETECTOR", ),
"detailer_hook": ("DETAILER_HOOK",)
}}
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "MASK", "DETAILER_PIPE", "IMAGE")
RETURN_NAMES = ("image", "cropped_refined", "cropped_enhanced_alpha", "mask", "detailer_pipe", "cnet_images")
OUTPUT_IS_LIST = (False, True, True, False, False, True)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Simple"
@staticmethod
def enhance_face(image, model, clip, vae, guide_size, guide_size_for_bbox, max_size, seed, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, feather, noise_mask, force_inpaint,
bbox_threshold, bbox_dilation, bbox_crop_factor,
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold,
sam_mask_hint_use_negative, drop_size,
bbox_detector, segm_detector=None, sam_model_opt=None, wildcard_opt=None, detailer_hook=None,
refiner_ratio=None, refiner_model=None, refiner_clip=None, refiner_positive=None, refiner_negative=None, cycle=1):
# make default prompt as 'face' if empty prompt for CLIPSeg
bbox_detector.setAux('face')
segs = bbox_detector.detect(image, bbox_threshold, bbox_dilation, bbox_crop_factor, drop_size, detailer_hook=detailer_hook)
bbox_detector.setAux(None)
# bbox + sam combination
if sam_model_opt is not None:
sam_mask = core.make_sam_mask(sam_model_opt, segs, image, sam_detection_hint, sam_dilation,
sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold,
sam_mask_hint_use_negative, )
segs = core.segs_bitwise_and_mask(segs, sam_mask)
elif segm_detector is not None:
segm_segs = segm_detector.detect(image, bbox_threshold, bbox_dilation, bbox_crop_factor, drop_size)
if (hasattr(segm_detector, 'override_bbox_by_segm') and segm_detector.override_bbox_by_segm and
not (detailer_hook is not None and not hasattr(detailer_hook, 'override_bbox_by_segm'))):
segs = segm_segs
else:
segm_mask = core.segs_to_combined_mask(segm_segs)
segs = core.segs_bitwise_and_mask(segs, segm_mask)
enhanced_img, _, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list, new_segs = \
DetailerForEach.do_detail(image, segs, model, clip, vae, guide_size, guide_size_for_bbox, max_size, seed, steps, cfg,
sampler_name, scheduler, positive, negative, denoise, feather, noise_mask,
force_inpaint, wildcard_opt, detailer_hook,
refiner_ratio=refiner_ratio, refiner_model=refiner_model,
refiner_clip=refiner_clip, refiner_positive=refiner_positive,
refiner_negative=refiner_negative, cycle=cycle)
# Mask Generator
mask = core.segs_to_combined_mask(segs)
if len(cropped_enhanced) == 0:
cropped_enhanced = [empty_pil_tensor()]
if len(cropped_enhanced_alpha) == 0:
cropped_enhanced_alpha = [empty_pil_tensor()]
if len(cnet_pil_list) == 0:
cnet_pil_list = [empty_pil_tensor()]
return enhanced_img, cropped_enhanced, cropped_enhanced_alpha, mask, cnet_pil_list
def doit(self, image, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, feather, noise_mask, force_inpaint,
bbox_threshold, bbox_dilation, bbox_crop_factor,
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold,
sam_mask_hint_use_negative, drop_size, bbox_detector, wildcard, cycle=1,
sam_model_opt=None, segm_detector_opt=None, detailer_hook=None):
enhanced_img, cropped_enhanced, cropped_enhanced_alpha, mask, cnet_pil_list = FaceDetailer.enhance_face(
image, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, feather, noise_mask, force_inpaint,
bbox_threshold, bbox_dilation, bbox_crop_factor,
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold,
sam_mask_hint_use_negative, drop_size, bbox_detector, segm_detector_opt, sam_model_opt, wildcard, detailer_hook, cycle=cycle)
pipe = (model, clip, vae, positive, negative, wildcard, bbox_detector, segm_detector_opt, sam_model_opt, detailer_hook, None, None, None, None)
return enhanced_img, cropped_enhanced, cropped_enhanced_alpha, mask, pipe, cnet_pil_list
class LatentPixelScale:
upscale_methods = ["nearest-exact", "bilinear", "area"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"samples": ("LATENT", ),
"scale_method": (s.upscale_methods,),
"scale_factor": ("FLOAT", {"default": 1.5, "min": 0.1, "max": 10000, "step": 0.1}),
"vae": ("VAE", ),
"use_tiled_vae": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
},
"optional": {
"upscale_model_opt": ("UPSCALE_MODEL", ),
}
}
RETURN_TYPES = ("LATENT","IMAGE")
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, samples, scale_method, scale_factor, vae, use_tiled_vae, upscale_model_opt=None):
if upscale_model_opt is None:
latimg = core.latent_upscale_on_pixel_space2(samples, scale_method, scale_factor, vae, use_tile=use_tiled_vae)
else:
latimg = core.latent_upscale_on_pixel_space_with_model2(samples, scale_method, upscale_model_opt, scale_factor, vae, use_tile=use_tiled_vae)
return latimg
class NoiseInjectionDetailerHookProvider:
schedules = ["simple"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"source": (["CPU", "GPU"],),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 200.0, "step": 0.01}),
},
}
RETURN_TYPES = ("DETAILER_HOOK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detailer"
def doit(self, source, seed, strength):
try:
hook = core.InjectNoiseHook(source, seed, strength, strength)
hook.set_steps((1, 1))
return (hook, )
except Exception as e:
print("[ERROR] NoiseInjectionDetailerHookProvider: 'ComfyUI Noise' custom node isn't installed. You must install 'BlenderNeko/ComfyUI Noise' extension to use this node.")
print(f"\t{e}")
pass
class CoreMLDetailerHookProvider:
@classmethod
def INPUT_TYPES(s):
return {"required": {"mode": (["512x512", "768x768", "512x768", "768x512"], )}, }
RETURN_TYPES = ("DETAILER_HOOK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detailer"
def doit(self, mode):
hook = core.CoreMLHook(mode)
return (hook, )
class CfgScheduleHookProvider:
schedules = ["simple"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"schedule_for_iteration": (s.schedules,),
"target_cfg": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0}),
},
}
RETURN_TYPES = ("PK_HOOK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, schedule_for_iteration, target_cfg):
hook = None
if schedule_for_iteration == "simple":
hook = core.SimpleCfgScheduleHook(target_cfg)
return (hook, )
class NoiseInjectionHookProvider:
schedules = ["simple"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"schedule_for_iteration": (s.schedules,),
"source": (["CPU", "GPU"],),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"start_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 200.0, "step": 0.01}),
"end_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 200.0, "step": 0.01}),
},
}
RETURN_TYPES = ("PK_HOOK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, schedule_for_iteration, source, seed, start_strength, end_strength):
try:
hook = None
if schedule_for_iteration == "simple":
hook = core.InjectNoiseHook(source, seed, start_strength, end_strength)
return (hook, )
except Exception as e:
print("[ERROR] NoiseInjectionHookProvider: 'ComfyUI Noise' custom node isn't installed. You must install 'BlenderNeko/ComfyUI Noise' extension to use this node.")
print(f"\t{e}")
pass
class DenoiseScheduleHookProvider:
schedules = ["simple"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"schedule_for_iteration": (s.schedules,),
"target_denoise": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 100.0}),
},
}
RETURN_TYPES = ("PK_HOOK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, schedule_for_iteration, target_denoise):
hook = None
if schedule_for_iteration == "simple":
hook = core.SimpleDenoiseScheduleHook(target_denoise)
return (hook, )
class PixelKSampleHookCombine:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"hook1": ("PK_HOOK",),
"hook2": ("PK_HOOK",),
},
}
RETURN_TYPES = ("PK_HOOK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, hook1, hook2):
hook = core.PixelKSampleHookCombine(hook1, hook2)
return (hook, )
class PixelTiledKSampleUpscalerProvider:
upscale_methods = ["nearest-exact", "bilinear", "area"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"scale_method": (s.upscale_methods,),
"model": ("MODEL",),
"vae": ("VAE",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"tile_width": ("INT", {"default": 512, "min": 320, "max": MAX_RESOLUTION, "step": 64}),
"tile_height": ("INT", {"default": 512, "min": 320, "max": MAX_RESOLUTION, "step": 64}),
"tiling_strategy": (["random", "padded", 'simple'], ),
},
"optional": {
"upscale_model_opt": ("UPSCALE_MODEL", ),
"pk_hook_opt": ("PK_HOOK", ),
}
}
RETURN_TYPES = ("UPSCALER",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise, tile_width, tile_height, tiling_strategy, upscale_model_opt=None, pk_hook_opt=None):
if "BNK_TiledKSampler" in nodes.NODE_CLASS_MAPPINGS:
upscaler = core.PixelTiledKSampleUpscaler(scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise, tile_width, tile_height, tiling_strategy, upscale_model_opt, pk_hook_opt, tile_size=max(tile_width, tile_height))
return (upscaler, )
else:
print("[ERROR] PixelTiledKSampleUpscalerProvider: ComfyUI_TiledKSampler custom node isn't installed. You must install BlenderNeko/ComfyUI_TiledKSampler extension to use this node.")
class PixelTiledKSampleUpscalerProviderPipe:
upscale_methods = ["nearest-exact", "bilinear", "area"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"scale_method": (s.upscale_methods,),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"tile_width": ("INT", {"default": 512, "min": 320, "max": MAX_RESOLUTION, "step": 64}),
"tile_height": ("INT", {"default": 512, "min": 320, "max": MAX_RESOLUTION, "step": 64}),
"tiling_strategy": (["random", "padded", 'simple'], ),
"basic_pipe": ("BASIC_PIPE",)
},
"optional": {
"upscale_model_opt": ("UPSCALE_MODEL", ),
"pk_hook_opt": ("PK_HOOK", ),
}
}
RETURN_TYPES = ("UPSCALER",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, scale_method, seed, steps, cfg, sampler_name, scheduler, denoise, tile_width, tile_height, tiling_strategy, basic_pipe, upscale_model_opt=None, pk_hook_opt=None):
if "BNK_TiledKSampler" in nodes.NODE_CLASS_MAPPINGS:
model, _, vae, positive, negative = basic_pipe
upscaler = core.PixelTiledKSampleUpscaler(scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise, tile_width, tile_height, tiling_strategy, upscale_model_opt, pk_hook_opt, tile_size=max(tile_width, tile_height))
return (upscaler, )
else:
print("[ERROR] PixelTiledKSampleUpscalerProviderPipe: ComfyUI_TiledKSampler custom node isn't installed. You must install BlenderNeko/ComfyUI_TiledKSampler extension to use this node.")
class PixelKSampleUpscalerProvider:
upscale_methods = ["nearest-exact", "bilinear", "area"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"scale_method": (s.upscale_methods,),
"model": ("MODEL",),
"vae": ("VAE",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"use_tiled_vae": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64}),
},
"optional": {
"upscale_model_opt": ("UPSCALE_MODEL", ),
"pk_hook_opt": ("PK_HOOK", ),
}
}
RETURN_TYPES = ("UPSCALER",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise,
use_tiled_vae, upscale_model_opt=None, pk_hook_opt=None, tile_size=512):
upscaler = core.PixelKSampleUpscaler(scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, use_tiled_vae, upscale_model_opt, pk_hook_opt,
tile_size=tile_size)
return (upscaler, )
class PixelKSampleUpscalerProviderPipe(PixelKSampleUpscalerProvider):
upscale_methods = ["nearest-exact", "bilinear", "area"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"scale_method": (s.upscale_methods,),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"use_tiled_vae": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"basic_pipe": ("BASIC_PIPE",),
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64}),
},
"optional": {
"upscale_model_opt": ("UPSCALE_MODEL", ),
"pk_hook_opt": ("PK_HOOK", ),
}
}
RETURN_TYPES = ("UPSCALER",)
FUNCTION = "doit_pipe"
CATEGORY = "ImpactPack/Upscale"
def doit_pipe(self, scale_method, seed, steps, cfg, sampler_name, scheduler, denoise,
use_tiled_vae, basic_pipe, upscale_model_opt=None, pk_hook_opt=None, tile_size=512):
model, _, vae, positive, negative = basic_pipe
upscaler = core.PixelKSampleUpscaler(scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, use_tiled_vae, upscale_model_opt, pk_hook_opt,
tile_size=tile_size)
return (upscaler, )
class TwoSamplersForMaskUpscalerProvider:
upscale_methods = ["nearest-exact", "bilinear", "area"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"scale_method": (s.upscale_methods,),
"full_sample_schedule": (
["none", "interleave1", "interleave2", "interleave3",
"last1", "last2",
"interleave1+last1", "interleave2+last1", "interleave3+last1",
],),
"use_tiled_vae": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"base_sampler": ("KSAMPLER", ),
"mask_sampler": ("KSAMPLER", ),
"mask": ("MASK", ),
"vae": ("VAE",),
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64}),
},
"optional": {
"full_sampler_opt": ("KSAMPLER",),
"upscale_model_opt": ("UPSCALE_MODEL", ),
"pk_hook_base_opt": ("PK_HOOK", ),
"pk_hook_mask_opt": ("PK_HOOK", ),
"pk_hook_full_opt": ("PK_HOOK", ),
}
}
RETURN_TYPES = ("UPSCALER", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, scale_method, full_sample_schedule, use_tiled_vae, base_sampler, mask_sampler, mask, vae,
full_sampler_opt=None, upscale_model_opt=None,
pk_hook_base_opt=None, pk_hook_mask_opt=None, pk_hook_full_opt=None, tile_size=512):
upscaler = core.TwoSamplersForMaskUpscaler(scale_method, full_sample_schedule, use_tiled_vae,
base_sampler, mask_sampler, mask, vae, full_sampler_opt, upscale_model_opt,
pk_hook_base_opt, pk_hook_mask_opt, pk_hook_full_opt, tile_size=tile_size)
return (upscaler, )
class TwoSamplersForMaskUpscalerProviderPipe:
upscale_methods = ["nearest-exact", "bilinear", "area"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"scale_method": (s.upscale_methods,),
"full_sample_schedule": (
["none", "interleave1", "interleave2", "interleave3",
"last1", "last2",
"interleave1+last1", "interleave2+last1", "interleave3+last1",
],),
"use_tiled_vae": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"base_sampler": ("KSAMPLER", ),
"mask_sampler": ("KSAMPLER", ),
"mask": ("MASK", ),
"basic_pipe": ("BASIC_PIPE",),
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64}),
},
"optional": {
"full_sampler_opt": ("KSAMPLER",),
"upscale_model_opt": ("UPSCALE_MODEL", ),
"pk_hook_base_opt": ("PK_HOOK", ),
"pk_hook_mask_opt": ("PK_HOOK", ),
"pk_hook_full_opt": ("PK_HOOK", ),
}
}
RETURN_TYPES = ("UPSCALER", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, scale_method, full_sample_schedule, use_tiled_vae, base_sampler, mask_sampler, mask, basic_pipe,
full_sampler_opt=None, upscale_model_opt=None,
pk_hook_base_opt=None, pk_hook_mask_opt=None, pk_hook_full_opt=None, tile_size=512):
if len(mask.shape) == 3:
mask = mask.squeeze(0)
_, _, vae, _, _ = basic_pipe
upscaler = core.TwoSamplersForMaskUpscaler(scale_method, full_sample_schedule, use_tiled_vae,
base_sampler, mask_sampler, mask, vae, full_sampler_opt, upscale_model_opt,
pk_hook_base_opt, pk_hook_mask_opt, pk_hook_full_opt, tile_size=tile_size)
return (upscaler, )
class IterativeLatentUpscale:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"samples": ("LATENT", ),
"upscale_factor": ("FLOAT", {"default": 1.5, "min": 1, "max": 10000, "step": 0.1}),
"steps": ("INT", {"default": 3, "min": 1, "max": 10000, "step": 1}),
"temp_prefix": ("STRING", {"default": ""}),
"upscaler": ("UPSCALER",)
},
"hidden": {"unique_id": "UNIQUE_ID"},
}
RETURN_TYPES = ("LATENT",)
RETURN_NAMES = ("latent",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, samples, upscale_factor, steps, temp_prefix, upscaler, unique_id):
w = samples['samples'].shape[3]*8 # image width
h = samples['samples'].shape[2]*8 # image height
if temp_prefix == "":
temp_prefix = None
upscale_factor_unit = max(0, (upscale_factor-1.0)/steps)
current_latent = samples
scale = 1
for i in range(steps-1):
scale += upscale_factor_unit
new_w = w*scale
new_h = h*scale
core.update_node_status(unique_id, f"{i+1}/{steps} steps | x{scale:.2f}", (i+1)/steps)
print(f"IterativeLatentUpscale[{i+1}/{steps}]: {new_w:.1f}x{new_h:.1f} (scale:{scale:.2f}) ")
step_info = i, steps
current_latent = upscaler.upscale_shape(step_info, current_latent, new_w, new_h, temp_prefix)
if scale < upscale_factor:
new_w = w*upscale_factor
new_h = h*upscale_factor
core.update_node_status(unique_id, f"Final step | x{upscale_factor:.2f}", 1.0)
print(f"IterativeLatentUpscale[Final]: {new_w:.1f}x{new_h:.1f} (scale:{upscale_factor:.2f}) ")
step_info = steps, steps
current_latent = upscaler.upscale_shape(step_info, current_latent, new_w, new_h, temp_prefix)
core.update_node_status(unique_id, "", None)
return (current_latent, )
class IterativeImageUpscale:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"pixels": ("IMAGE", ),
"upscale_factor": ("FLOAT", {"default": 1.5, "min": 1, "max": 10000, "step": 0.1}),
"steps": ("INT", {"default": 3, "min": 1, "max": 10000, "step": 1}),
"temp_prefix": ("STRING", {"default": ""}),
"upscaler": ("UPSCALER",),
"vae": ("VAE",),
},
"hidden": {"unique_id": "UNIQUE_ID"}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, pixels, upscale_factor, steps, temp_prefix, upscaler, vae, unique_id):
if temp_prefix == "":
temp_prefix = None
core.update_node_status(unique_id, "VAEEncode (first)", 0)
if upscaler.is_tiled:
latent = nodes.VAEEncodeTiled().encode(vae, pixels, upscaler.tile_size)[0]
else:
latent = nodes.VAEEncode().encode(vae, pixels)[0]
refined_latent = IterativeLatentUpscale().doit(latent, upscale_factor, steps, temp_prefix, upscaler, unique_id)
core.update_node_status(unique_id, "VAEDecode (final)", 1.0)
if upscaler.is_tiled:
pixels = nodes.VAEDecodeTiled().decode(vae, refined_latent[0], upscaler.tile_size)[0]
else:
pixels = nodes.VAEDecode().decode(vae, refined_latent[0])[0]
core.update_node_status(unique_id, "", None)
return (pixels, )
class FaceDetailerPipe:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE", ),
"detailer_pipe": ("DETAILER_PIPE",),
"guide_size": ("FLOAT", {"default": 256, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"guide_size_for": ("BOOLEAN", {"default": True, "label_on": "bbox", "label_off": "crop_region"}),
"max_size": ("FLOAT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS,),
"denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}),
"feather": ("INT", {"default": 5, "min": 0, "max": 100, "step": 1}),
"noise_mask": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"force_inpaint": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"bbox_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"bbox_dilation": ("INT", {"default": 10, "min": -512, "max": 512, "step": 1}),
"bbox_crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 10, "step": 0.1}),
"sam_detection_hint": (["center-1", "horizontal-2", "vertical-2", "rect-4", "diamond-4", "mask-area", "mask-points", "mask-point-bbox", "none"],),
"sam_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
"sam_threshold": ("FLOAT", {"default": 0.93, "min": 0.0, "max": 1.0, "step": 0.01}),
"sam_bbox_expansion": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}),
"sam_mask_hint_threshold": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
"sam_mask_hint_use_negative": (["False", "Small", "Outter"],),
"drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}),
"refiner_ratio": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0}),
"cycle": ("INT", {"default": 1, "min": 1, "max": 10, "step": 1}),
},
}
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "MASK", "DETAILER_PIPE", "IMAGE")
RETURN_NAMES = ("image", "cropped_refined", "cropped_enhanced_alpha", "mask", "detailer_pipe", "cnet_images")
OUTPUT_IS_LIST = (False, True, True, False, False, True)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Simple"
def doit(self, image, detailer_pipe, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler,
denoise, feather, noise_mask, force_inpaint, bbox_threshold, bbox_dilation, bbox_crop_factor,
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion,
sam_mask_hint_threshold, sam_mask_hint_use_negative, drop_size, refiner_ratio=None, cycle=1):
model, clip, vae, positive, negative, wildcard, bbox_detector, segm_detector, sam_model_opt, detailer_hook, \
refiner_model, refiner_clip, refiner_positive, refiner_negative = detailer_pipe
enhanced_img, cropped_enhanced, cropped_enhanced_alpha, mask, cnet_pil_list = FaceDetailer.enhance_face(
image, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, feather, noise_mask, force_inpaint,
bbox_threshold, bbox_dilation, bbox_crop_factor,
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold,
sam_mask_hint_use_negative, drop_size, bbox_detector, segm_detector, sam_model_opt, wildcard, detailer_hook,
refiner_ratio=refiner_ratio, refiner_model=refiner_model,
refiner_clip=refiner_clip, refiner_positive=refiner_positive, refiner_negative=refiner_negative,
cycle=cycle)
if len(cropped_enhanced) == 0:
cropped_enhanced = [empty_pil_tensor()]
if len(cropped_enhanced_alpha) == 0:
cropped_enhanced_alpha = [empty_pil_tensor()]
if len(cnet_pil_list) == 0:
cnet_pil_list = [empty_pil_tensor()]
return enhanced_img, cropped_enhanced, cropped_enhanced_alpha, mask, detailer_pipe, cnet_pil_list
class MaskDetailerPipe:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE", ),
"mask": ("MASK", ),
"basic_pipe": ("BASIC_PIPE",),
"guide_size": ("FLOAT", {"default": 256, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"guide_size_for": ("BOOLEAN", {"default": True, "label_on": "mask bbox", "label_off": "crop region"}),
"max_size": ("FLOAT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"mask_mode": ("BOOLEAN", {"default": True, "label_on": "masked only", "label_off": "whole"}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS,),
"denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}),
"feather": ("INT", {"default": 5, "min": 0, "max": 100, "step": 1}),
"crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 10, "step": 0.1}),
"drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}),
"refiner_ratio": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 100}),
"cycle": ("INT", {"default": 1, "min": 1, "max": 10, "step": 1}),
},
"optional": {
"refiner_basic_pipe_opt": ("BASIC_PIPE", ),
"detailer_hook": ("DETAILER_HOOK",),
}
}
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "BASIC_PIPE", "BASIC_PIPE")
RETURN_NAMES = ("image", "cropped_refined", "cropped_enhanced_alpha", "basic_pipe", "refiner_basic_pipe_opt")
OUTPUT_IS_LIST = (False, True, True, False, False)
FUNCTION = "doit"
CATEGORY = "ImpactPack/__for_test"
def doit(self, image, mask, basic_pipe, guide_size, guide_size_for, max_size, mask_mode,
seed, steps, cfg, sampler_name, scheduler, denoise,
feather, crop_factor, drop_size, refiner_ratio, batch_size, cycle=1,
refiner_basic_pipe_opt=None, detailer_hook=None):
model, clip, vae, positive, negative = basic_pipe
if refiner_basic_pipe_opt is None:
refiner_model, refiner_clip, refiner_positive, refiner_negative = None, None, None, None
else:
refiner_model, refiner_clip, _, refiner_positive, refiner_negative = refiner_basic_pipe_opt
# create segs
if len(mask.shape) == 3:
mask = mask.squeeze(0)
segs = core.mask_to_segs(mask, False, crop_factor, False, drop_size)
enhanced_img_batch = None
cropped_enhanced_list = []
cropped_enhanced_alpha_list = []
for i in range(batch_size):
enhanced_img, _, cropped_enhanced, cropped_enhanced_alpha, _, new_segs = \
DetailerForEach.do_detail(image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed+i, steps,
cfg, sampler_name, scheduler, positive, negative, denoise, feather, mask_mode,
force_inpaint=True, wildcard_opt=None, detailer_hook=detailer_hook,
refiner_ratio=refiner_ratio, refiner_model=refiner_model, refiner_clip=refiner_clip,
refiner_positive=refiner_positive, refiner_negative=refiner_negative, cycle=cycle)
if enhanced_img_batch is None:
enhanced_img_batch = enhanced_img
else:
enhanced_img_batch = torch.cat((enhanced_img_batch, enhanced_img), dim=0)
cropped_enhanced_list += cropped_enhanced
cropped_enhanced_alpha_list += cropped_enhanced_alpha_list
# set fallback image
if len(cropped_enhanced_list) == 0:
cropped_enhanced_list = [empty_pil_tensor()]
if len(cropped_enhanced_alpha_list) == 0:
cropped_enhanced_alpha_list = [empty_pil_tensor()]
return enhanced_img_batch, cropped_enhanced_list, cropped_enhanced_alpha_list, basic_pipe, refiner_basic_pipe_opt
class DetailerForEachTest(DetailerForEach):
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "IMAGE", "IMAGE")
RETURN_NAMES = ("image", "cropped", "cropped_refined", "cropped_refined_alpha", "cnet_images")
OUTPUT_IS_LIST = (False, True, True, True, True)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detailer"
def doit(self, image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name,
scheduler, positive, negative, denoise, feather, noise_mask, force_inpaint, wildcard, detailer_hook=None,
cycle=1):
enhanced_img, cropped, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list, new_segs = \
DetailerForEach.do_detail(image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps,
cfg, sampler_name, scheduler, positive, negative, denoise, feather, noise_mask,
force_inpaint, wildcard, detailer_hook, cycle=cycle)
# set fallback image
if len(cropped) == 0:
cropped = [empty_pil_tensor()]
if len(cropped_enhanced) == 0:
cropped_enhanced = [empty_pil_tensor()]
if len(cropped_enhanced_alpha) == 0:
cropped_enhanced_alpha = [empty_pil_tensor()]
if len(cnet_pil_list) == 0:
cnet_pil_list = [empty_pil_tensor()]
return enhanced_img, cropped, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list
class DetailerForEachTestPipe(DetailerForEachPipe):
RETURN_TYPES = ("IMAGE", "SEGS", "BASIC_PIPE", "IMAGE", "IMAGE", "IMAGE", "IMAGE", )
RETURN_NAMES = ("image", "segs", "basic_pipe", "cropped", "cropped_refined", "cropped_refined_alpha", 'cnet_images')
OUTPUT_IS_LIST = (False, False, False, True, True, True, True)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detailer"
def doit(self, image, segs, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler,
denoise, feather, noise_mask, force_inpaint, basic_pipe, wildcard, cycle=1,
refiner_ratio=None, detailer_hook=None, refiner_basic_pipe_opt=None):
model, clip, vae, positive, negative = basic_pipe
if refiner_basic_pipe_opt is None:
refiner_model, refiner_clip, refiner_positive, refiner_negative = None, None, None, None
else:
refiner_model, refiner_clip, _, refiner_positive, refiner_negative = refiner_basic_pipe_opt
enhanced_img, cropped, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list, new_segs = \
DetailerForEach.do_detail(image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, cfg,
sampler_name, scheduler, positive, negative, denoise, feather, noise_mask,
force_inpaint, wildcard, detailer_hook,
refiner_ratio=refiner_ratio, refiner_model=refiner_model,
refiner_clip=refiner_clip, refiner_positive=refiner_positive,
refiner_negative=refiner_negative, cycle=cycle)
# set fallback image
if len(cropped) == 0:
cropped = [empty_pil_tensor()]
if len(cropped_enhanced) == 0:
cropped_enhanced = [empty_pil_tensor()]
if len(cropped_enhanced_alpha) == 0:
cropped_enhanced_alpha = [empty_pil_tensor()]
if len(cnet_pil_list) == 0:
cnet_pil_list = [empty_pil_tensor()]
return enhanced_img, new_segs, basic_pipe, cropped, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list
class SegsBitwiseAndMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"segs": ("SEGS",),
"mask": ("MASK",),
}
}
RETURN_TYPES = ("SEGS",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, segs, mask):
return (core.segs_bitwise_and_mask(segs, mask), )
class SegsBitwiseAndMaskForEach:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"segs": ("SEGS",),
"masks": ("MASK",),
}
}
RETURN_TYPES = ("SEGS",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, segs, masks):
return (core.apply_mask_to_each_seg(segs, masks), )
class BitwiseAndMaskForEach:
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"base_segs": ("SEGS",),
"mask_segs": ("SEGS",),
}
}
RETURN_TYPES = ("SEGS",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, base_segs, mask_segs):
result = []
for bseg in base_segs[1]:
cropped_mask1 = bseg.cropped_mask.copy()
crop_region1 = bseg.crop_region
for mseg in mask_segs[1]:
cropped_mask2 = mseg.cropped_mask
crop_region2 = mseg.crop_region
# compute the intersection of the two crop regions
intersect_region = (max(crop_region1[0], crop_region2[0]),
max(crop_region1[1], crop_region2[1]),
min(crop_region1[2], crop_region2[2]),
min(crop_region1[3], crop_region2[3]))
overlapped = False
# set all pixels in cropped_mask1 to 0 except for those that overlap with cropped_mask2
for i in range(intersect_region[0], intersect_region[2]):
for j in range(intersect_region[1], intersect_region[3]):
if cropped_mask1[j - crop_region1[1], i - crop_region1[0]] == 1 and \
cropped_mask2[j - crop_region2[1], i - crop_region2[0]] == 1:
# pixel overlaps with both masks, keep it as 1
overlapped = True
pass
else:
# pixel does not overlap with both masks, set it to 0
cropped_mask1[j - crop_region1[1], i - crop_region1[0]] = 0
if overlapped:
item = SEG(bseg.cropped_image, cropped_mask1, bseg.confidence, bseg.crop_region, bseg.bbox, bseg.label, None)
result.append(item)
return ((base_segs[0], result),)
class SubtractMaskForEach:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"base_segs": ("SEGS",),
"mask_segs": ("SEGS",),
}
}
RETURN_TYPES = ("SEGS",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, base_segs, mask_segs):
result = []
for bseg in base_segs[1]:
cropped_mask1 = bseg.cropped_mask.copy()
crop_region1 = bseg.crop_region
for mseg in mask_segs[1]:
cropped_mask2 = mseg.cropped_mask
crop_region2 = mseg.crop_region
# compute the intersection of the two crop regions
intersect_region = (max(crop_region1[0], crop_region2[0]),
max(crop_region1[1], crop_region2[1]),
min(crop_region1[2], crop_region2[2]),
min(crop_region1[3], crop_region2[3]))
changed = False
# subtract operation
for i in range(intersect_region[0], intersect_region[2]):
for j in range(intersect_region[1], intersect_region[3]):
if cropped_mask1[j - crop_region1[1], i - crop_region1[0]] == 1 and \
cropped_mask2[j - crop_region2[1], i - crop_region2[0]] == 1:
# pixel overlaps with both masks, set it as 0
changed = True
cropped_mask1[j - crop_region1[1], i - crop_region1[0]] = 0
else:
# pixel does not overlap with both masks, don't care
pass
if changed:
item = SEG(bseg.cropped_image, cropped_mask1, bseg.confidence, bseg.crop_region, bseg.bbox, bseg.label, None)
result.append(item)
else:
result.append(base_segs)
return ((base_segs[0], result),)
class MasksToMaskList:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"masks": ("MASK", ),
}
}
RETURN_TYPES = ("MASK", )
OUTPUT_IS_LIST = (True, )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, masks):
if masks is None:
empty_mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
return ([empty_mask], )
res = []
for mask in masks:
res.append(mask)
print(f"mask len: {len(res)}")
return (res, )
class MaskListToMaskBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"mask": ("MASK", ),
}
}
INPUT_IS_LIST = True
RETURN_TYPES = ("MASK", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, mask):
if len(mask) == 1:
if len(mask[0].shape) == 2:
mask = mask[0].unsqueeze(0)
return (mask,)
elif len(mask) > 1:
mask1 = mask[0]
if len(mask1.shape) == 2:
mask1 = mask1.unsqueeze(0)
for mask2 in mask[1:]:
if len(mask2.shape) == 2:
mask2 = mask2.unsqueeze(0)
if mask1.shape[1:] != mask2.shape[1:]:
mask2 = comfy.utils.common_upscale(mask2.movedim(-1, 1), mask1.shape[2], mask1.shape[1], "bilinear", "center").movedim(1, -1)
mask1 = torch.cat((mask1, mask2), dim=0)
return (mask1,)
else:
empty_mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu").unsqueeze(0)
return (empty_mask,)
class ImageListToMaskBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"images": ("IMAGE", ),
}
}
INPUT_IS_LIST = True
RETURN_TYPES = ("IMAGE", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, images):
if len(images) <= 1:
return (images,)
else:
image1 = images[0]
for image2 in images[1:]:
if image1.shape[1:] != image2.shape[1:]:
image2 = comfy.utils.common_upscale(image2.movedim(-1, 1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1, -1)
image1 = torch.cat((image1, image2), dim=0)
return (image1,)
class ToBinaryMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"mask": ("MASK",),
"threshold": ("INT", {"default": 20, "min": 1, "max": 255}),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, mask, threshold):
mask = to_binary_mask(mask, threshold/255.0)
return (mask,)
class BitwiseAndMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"mask1": ("MASK",),
"mask2": ("MASK",),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, mask1, mask2):
mask = bitwise_and_masks(mask1, mask2)
return (mask,)
class SubtractMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"mask1": ("MASK", ),
"mask2": ("MASK", ),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, mask1, mask2):
mask = subtract_masks(mask1, mask2)
return (mask,)
class AddMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"mask1": ("MASK",),
"mask2": ("MASK",),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, mask1, mask2):
mask = add_masks(mask1, mask2)
return (mask,)
import nodes
def get_image_hash(arr):
split_index1 = arr.shape[0] // 2
split_index2 = arr.shape[1] // 2
part1 = arr[:split_index1, :split_index2]
part2 = arr[:split_index1, split_index2:]
part3 = arr[split_index1:, :split_index2]
part4 = arr[split_index1:, split_index2:]
# 각 부분을 합산
sum1 = np.sum(part1)
sum2 = np.sum(part2)
sum3 = np.sum(part3)
sum4 = np.sum(part4)
return hash((sum1, sum2, sum3, sum4))
def get_file_item(base_type, path):
path_type = base_type
if path == "[output]":
path_type = "output"
path = path[:-9]
elif path == "[input]":
path_type = "input"
path = path[:-8]
elif path == "[temp]":
path_type = "temp"
path = path[:-7]
subfolder = os.path.dirname(path)
filename = os.path.basename(path)
return {
"filename": filename,
"subfolder": subfolder,
"type": path_type
}
class PreviewBridge:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"images": ("IMAGE",),
"image": ("STRING", {"default": ""}),
},
"hidden": {"unique_id": "UNIQUE_ID"},
}
RETURN_TYPES = ("IMAGE", "MASK", )
FUNCTION = "doit"
OUTPUT_NODE = True
CATEGORY = "ImpactPack/Util"
def __init__(self):
super().__init__()
self.output_dir = folder_paths.get_temp_directory()
self.type = "temp"
self.prev_hash = None
@staticmethod
def load_image(pb_id):
is_fail = False
if pb_id not in impact.core.preview_bridge_image_id_map:
is_fail = True
image_path, ui_item = impact.core.preview_bridge_image_id_map[pb_id]
if not os.path.isfile(image_path):
is_fail = True
if not is_fail:
i = Image.open(image_path)
i = ImageOps.exif_transpose(i)
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
if is_fail:
image = empty_pil_tensor()
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
ui_item = {
"filename": 'empty.png',
"subfolder": '',
"type": 'temp'
}
return (image, mask.unsqueeze(0), ui_item)
def doit(self, images, image, unique_id):
need_refresh = False
if unique_id not in impact.core.preview_bridge_cache:
need_refresh = True
elif impact.core.preview_bridge_cache[unique_id][0] is not images:
need_refresh = True
if not need_refresh:
pixels, mask, path_item = PreviewBridge.load_image(image)
image = [path_item]
else:
res = nodes.PreviewImage().save_images(images, filename_prefix="PreviewBridge/PB-")
image2 = res['ui']['images']
pixels = images
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
path = os.path.join(folder_paths.get_temp_directory(), 'PreviewBridge', image2[0]['filename'])
impact.core.set_previewbridge_image(unique_id, path, image2[0])
impact.core.preview_bridge_image_id_map[image] = (path, image2[0])
impact.core.preview_bridge_image_name_map[unique_id, path] = (image, image2[0])
impact.core.preview_bridge_cache[unique_id] = (images, image2)
image = image2
return {
"ui": {"images": image},
"result": (pixels, mask, ),
}
class ImageReceiver:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
return {"required": {
"image": (sorted(files), ),
"link_id": ("INT", {"default": 0, "min": 0, "max": sys.maxsize, "step": 1}),
"save_to_workflow": ("BOOLEAN", {"default": False}),
"image_data": ("STRING", {"multiline": False}),
"trigger_always": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}),
},
}
FUNCTION = "doit"
RETURN_TYPES = ("IMAGE", "MASK")
CATEGORY = "ImpactPack/Util"
def doit(self, image, link_id, save_to_workflow, image_data, trigger_always):
if save_to_workflow:
try:
image_data = base64.b64decode(image_data.split(",")[1])
i = Image.open(BytesIO(image_data))
i = ImageOps.exif_transpose(i)
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
return (image, mask.unsqueeze(0))
except Exception as e:
print(f"[WARN] ComfyUI-Impact-Pack: ImageReceiver - invalid 'image_data'")
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
return (empty_pil_tensor(64, 64), mask, )
else:
return nodes.LoadImage().load_image(image)
@classmethod
def VALIDATE_INPUTS(s, image, link_id, save_to_workflow, image_data, trigger_always):
if image != '#DATA' and not folder_paths.exists_annotated_filepath(image) or image.startswith("/") or ".." in image:
return "Invalid image file: {}".format(image)
return True
@classmethod
def IS_CHANGED(s, image, link_id, save_to_workflow, image_data, trigger_always):
if trigger_always:
return float("NaN")
else:
if save_to_workflow:
return hash(image_data)
else:
return hash(image)
from server import PromptServer
class ImageSender(nodes.PreviewImage):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"images": ("IMAGE", ),
"filename_prefix": ("STRING", {"default": "ImgSender"}),
"link_id": ("INT", {"default": 0, "min": 0, "max": sys.maxsize, "step": 1}), },
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
OUTPUT_NODE = True
FUNCTION = "doit"
CATEGORY = "ImpactPack/Util"
def doit(self, images, filename_prefix="ImgSender", link_id=0, prompt=None, extra_pnginfo=None):
result = nodes.PreviewImage().save_images(images, filename_prefix, prompt, extra_pnginfo)
PromptServer.instance.send_sync("img-send", {"link_id": link_id, "images": result['ui']['images']})
return result
class LatentReceiver:
def __init__(self):
self.input_dir = folder_paths.get_input_directory()
self.type = "input"
@classmethod
def INPUT_TYPES(s):
def check_file_extension(x):
return x.endswith(".latent") or x.endswith(".latent.png")
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and check_file_extension(f)]
return {"required": {
"latent": (sorted(files), ),
"link_id": ("INT", {"default": 0, "min": 0, "max": sys.maxsize, "step": 1}),
"trigger_always": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}),
},
}
FUNCTION = "doit"
CATEGORY = "ImpactPack/Util"
RETURN_TYPES = ("LATENT",)
@staticmethod
def load_preview_latent(image_path):
if not os.path.exists(image_path):
return None
image = Image.open(image_path)
exif_data = piexif.load(image.info["exif"])
if piexif.ExifIFD.UserComment in exif_data["Exif"]:
compressed_data = exif_data["Exif"][piexif.ExifIFD.UserComment]
compressed_data_io = BytesIO(compressed_data)
with zipfile.ZipFile(compressed_data_io, mode='r') as archive:
tensor_bytes = archive.read("latent")
tensor = safetensors.torch.load(tensor_bytes)
return {"samples": tensor['latent_tensor']}
return None
def parse_filename(self, filename):
pattern = r"^(.*)/(.*?)\[(.*)\]\s*$"
match = re.match(pattern, filename)
if match:
subfolder = match.group(1)
filename = match.group(2).rstrip()
file_type = match.group(3)
else:
subfolder = ''
file_type = self.type
return {'filename': filename, 'subfolder': subfolder, 'type': file_type}
def doit(self, **kwargs):
if 'latent' not in kwargs:
return (torch.zeros([1, 4, 8, 8]), )
latent = kwargs['latent']
latent_name = latent
latent_path = folder_paths.get_annotated_filepath(latent_name)
if latent.endswith(".latent"):
latent = safetensors.torch.load_file(latent_path, device="cpu")
multiplier = 1.0
if "latent_format_version_0" not in latent:
multiplier = 1.0 / 0.18215
samples = {"samples": latent["latent_tensor"].float() * multiplier}
else:
samples = LatentReceiver.load_preview_latent(latent_path)
if samples is None:
samples = {'samples': torch.zeros([1, 4, 8, 8])}
preview = self.parse_filename(latent_name)
return {
'ui': {"images": [preview]},
'result': (samples, )
}
@classmethod
def IS_CHANGED(s, latent, link_id, trigger_always):
if trigger_always:
return float("NaN")
else:
image_path = folder_paths.get_annotated_filepath(latent)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def VALIDATE_INPUTS(s, latent, link_id, trigger_always):
if not folder_paths.exists_annotated_filepath(latent) or latent.startswith("/") or ".." in latent:
return "Invalid latent file: {}".format(latent)
return True
class LatentSender(nodes.SaveLatent):
def __init__(self):
self.output_dir = folder_paths.get_temp_directory()
self.type = "temp"
@classmethod
def INPUT_TYPES(s):
return {"required": {
"samples": ("LATENT", ),
"filename_prefix": ("STRING", {"default": "latents/LatentSender"}),
"link_id": ("INT", {"default": 0, "min": 0, "max": sys.maxsize, "step": 1}),
"preview_method": (["Latent2RGB-SDXL", "Latent2RGB-SD15", "TAESDXL", "TAESD15"],)
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
OUTPUT_NODE = True
RETURN_TYPES = ()
FUNCTION = "doit"
CATEGORY = "ImpactPack/Util"
@staticmethod
def save_to_file(tensor_bytes, prompt, extra_pnginfo, image, image_path):
compressed_data = BytesIO()
with zipfile.ZipFile(compressed_data, mode='w') as archive:
archive.writestr("latent", tensor_bytes)
image = image.copy()
exif_data = {"Exif": {piexif.ExifIFD.UserComment: compressed_data.getvalue()}}
metadata = PngInfo()
if prompt is not None:
metadata.add_text("prompt", json.dumps(prompt))
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
exif_bytes = piexif.dump(exif_data)
image.save(image_path, format='png', exif=exif_bytes, pnginfo=metadata, optimize=True)
@staticmethod
def prepare_preview(latent_tensor, preview_method):
from comfy.cli_args import LatentPreviewMethod
import comfy.latent_formats as latent_formats
lower_bound = 128
upper_bound = 256
if preview_method == "Latent2RGB-SD15":
latent_format = latent_formats.SD15()
method = LatentPreviewMethod.Latent2RGB
elif preview_method == "TAESD15":
latent_format = latent_formats.SD15()
method = LatentPreviewMethod.TAESD
elif preview_method == "TAESDXL":
latent_format = latent_formats.SDXL()
method = LatentPreviewMethod.TAESD
else: # preview_method == "Latent2RGB-SDXL"
latent_format = latent_formats.SDXL()
method = LatentPreviewMethod.Latent2RGB
previewer = core.get_previewer("cpu", latent_format=latent_format, force=True, method=method)
image = previewer.decode_latent_to_preview(latent_tensor)
min_size = min(image.size[0], image.size[1])
max_size = max(image.size[0], image.size[1])
scale_factor = 1
if max_size > upper_bound:
scale_factor = upper_bound/max_size
# prevent too small preview
if min_size*scale_factor < lower_bound:
scale_factor = lower_bound/min_size
w = int(image.size[0] * scale_factor)
h = int(image.size[1] * scale_factor)
image = image.resize((w, h), resample=Image.NEAREST)
return LatentSender.attach_format_text(image)
@staticmethod
def attach_format_text(image):
width_a, height_a = image.size
letter_image = Image.open(latent_letter_path)
width_b, height_b = letter_image.size
new_width = max(width_a, width_b)
new_height = height_a + height_b
new_image = Image.new('RGB', (new_width, new_height), (0, 0, 0))
offset_x = (new_width - width_b) // 2
offset_y = (height_a + (new_height - height_a - height_b) // 2)
new_image.paste(letter_image, (offset_x, offset_y))
new_image.paste(image, (0, 0))
return new_image
def doit(self, samples, filename_prefix="latents/LatentSender", link_id=0, preview_method="Latent2RGB-SDXL", prompt=None, extra_pnginfo=None):
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
# load preview
preview = LatentSender.prepare_preview(samples['samples'], preview_method)
# support save metadata for latent sharing
file = f"{filename}_{counter:05}_.latent.png"
fullpath = os.path.join(full_output_folder, file)
output = {"latent_tensor": samples["samples"]}
tensor_bytes = safetensors.torch.save(output)
LatentSender.save_to_file(tensor_bytes, prompt, extra_pnginfo, preview, fullpath)
latent_path = {
'filename': file,
'subfolder': subfolder,
'type': self.type
}
PromptServer.instance.send_sync("latent-send", {"link_id": link_id, "images": [latent_path]})
return {'ui': {'images': [latent_path]}}
class ImageMaskSwitch:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"select": ("INT", {"default": 1, "min": 1, "max": 4, "step": 1}),
"images1": ("IMAGE", ),
},
"optional": {
"mask1_opt": ("MASK",),
"images2_opt": ("IMAGE",),
"mask2_opt": ("MASK",),
"images3_opt": ("IMAGE",),
"mask3_opt": ("MASK",),
"images4_opt": ("IMAGE",),
"mask4_opt": ("MASK",),
},
}
RETURN_TYPES = ("IMAGE", "MASK", )
OUTPUT_NODE = True
FUNCTION = "doit"
CATEGORY = "ImpactPack/Util"
def doit(self, select, images1, mask1_opt=None, images2_opt=None, mask2_opt=None, images3_opt=None, mask3_opt=None, images4_opt=None, mask4_opt=None):
if select == 1:
return images1, mask1_opt,
elif select == 2:
return images2_opt, mask2_opt,
elif select == 3:
return images3_opt, mask3_opt,
else:
return images4_opt, mask4_opt,
class LatentSwitch:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"select": ("INT", {"default": 1, "min": 1, "max": 99999, "step": 1}),
"latent1": ("LATENT",),
},
}
RETURN_TYPES = ("LATENT", )
OUTPUT_NODE = True
FUNCTION = "doit"
CATEGORY = "ImpactPack/Util"
def doit(self, *args, **kwargs):
input_name = f"latent{int(kwargs['select'])}"
if input_name in kwargs:
return (kwargs[input_name],)
else:
print(f"LatentSwitch: invalid select index ('latent1' is selected)")
return (kwargs['latent1'],)
class ImpactWildcardProcessor:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"wildcard_text": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"populated_text": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"mode": ("BOOLEAN", {"default": True, "label_on": "Populate", "label_off": "Fixed"}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"Select to add Wildcard": (["Select the Wildcard to add to the text"],),
},
}
CATEGORY = "ImpactPack/Prompt"
RETURN_TYPES = ("STRING", )
FUNCTION = "doit"
def doit(self, *args, **kwargs):
populated_text = kwargs['populated_text']
return (populated_text, )
class ImpactWildcardEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"clip": ("CLIP",),
"wildcard_text": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"populated_text": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"mode": ("BOOLEAN", {"default": True, "label_on": "Populate", "label_off": "Fixed"}),
"Select to add LoRA": (["Select the LoRA to add to the text"] + folder_paths.get_filename_list("loras"), ),
"Select to add Wildcard": (["Select the Wildcard to add to the text"], ),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
},
}
CATEGORY = "ImpactPack/Prompt"
RETURN_TYPES = ("MODEL", "CLIP", "CONDITIONING", "STRING")
RETURN_NAMES = ("model", "clip", "conditioning", "populated_text")
FUNCTION = "doit"
@staticmethod
def process_with_loras(**kwargs):
return impact.wildcards.process_with_loras(**kwargs)
@staticmethod
def get_wildcard_list():
return impact.wildcards.get_wildcard_list()
def doit(self, *args, **kwargs):
populated = kwargs['populated_text']
model, clip, conditioning = impact.wildcards.process_with_loras(populated, kwargs['model'], kwargs['clip'])
return (model, clip, conditioning, populated)
class ReencodeLatent:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"samples": ("LATENT", ),
"tile_mode": (["None", "Both", "Decode(input) only", "Encode(output) only"],),
"input_vae": ("VAE", ),
"output_vae": ("VAE", ),
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64}),
},
}
CATEGORY = "ImpactPack/Util"
RETURN_TYPES = ("LATENT", )
FUNCTION = "doit"
def doit(self, samples, tile_mode, input_vae, output_vae, tile_size=512):
if tile_mode in ["Both", "Decode(input) only"]:
pixels = nodes.VAEDecodeTiled().decode(input_vae, samples, tile_size)[0]
else:
pixels = nodes.VAEDecode().decode(input_vae, samples)[0]
if tile_mode in ["Both", "Encode(output) only"]:
return nodes.VAEEncodeTiled().encode(output_vae, pixels, tile_size)
else:
return nodes.VAEEncode().encode(output_vae, pixels)
class ReencodeLatentPipe:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"samples": ("LATENT", ),
"tile_mode": (["None", "Both", "Decode(input) only", "Encode(output) only"],),
"input_basic_pipe": ("BASIC_PIPE", ),
"output_basic_pipe": ("BASIC_PIPE", ),
},
}
CATEGORY = "ImpactPack/Util"
RETURN_TYPES = ("LATENT", )
FUNCTION = "doit"
def doit(self, samples, tile_mode, input_basic_pipe, output_basic_pipe):
_, _, input_vae, _, _ = input_basic_pipe
_, _, output_vae, _, _ = output_basic_pipe
return ReencodeLatent().doit(samples, tile_mode, input_vae, output_vae)
class ImageBatchToImageList:
@classmethod
def INPUT_TYPES(s):
return {"required": {"image": ("IMAGE",), }}
RETURN_TYPES = ("IMAGE",)
OUTPUT_IS_LIST = (True,)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Util"
def doit(self, image):
images = [image[i:i + 1, ...] for i in range(image.shape[0])]
return (images, )
class MakeImageList:
@classmethod
def INPUT_TYPES(s):
return {"required": {"image1": ("IMAGE",), }}
RETURN_TYPES = ("IMAGE",)
OUTPUT_IS_LIST = (True,)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Util"
def doit(self, **kwargs):
images = []
for k, v in kwargs.items():
images.append(v)
return (images, )
class MakeImageBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": {"image1": ("IMAGE",), }}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Util"
def doit(self, **kwargs):
image1 = kwargs['image1']
del kwargs['image1']
images = [value for value in kwargs.values()]
if len(images) == 0:
return (image1,)
else:
for image2 in images:
if image1.shape[1:] != image2.shape[1:]:
image2 = comfy.utils.common_upscale(image2.movedim(-1, 1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1, -1)
image1 = torch.cat((image1, image2), dim=0)
return (image1,)
class StringSelector:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"strings": ("STRING", {"multiline": True}),
"multiline": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"select": ("INT", {"min": 0, "max": sys.maxsize, "step": 1, "default": 0}),
}}
RETURN_TYPES = ("STRING",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Util"
def doit(self, strings, multiline, select):
lines = strings.split('\n')
if multiline:
result = []
current_string = ""
for line in lines:
if line.startswith("#"):
if current_string:
result.append(current_string.strip())
current_string = ""
current_string += line + "\n"
if current_string:
result.append(current_string.strip())
if len(result) == 0:
selected = strings
else:
selected = result[select % len(result)]
if selected.startswith('#'):
selected = selected[1:]
else:
if len(lines) == 0:
selected = strings
else:
selected = lines[select % len(lines)]
return (selected, )