StupidGame's picture
Upload 1941 files
baa8e90
import os
import threading
from aiohttp import web
import impact
import server
import folder_paths
import impact.core as core
import impact.impact_pack as impact_pack
from segment_anything import SamPredictor, sam_model_registry
import numpy as np
import nodes
from PIL import Image
import io
import impact.wildcards as wildcards
import comfy
from io import BytesIO
import random
@server.PromptServer.instance.routes.post("/upload/temp")
async def upload_image(request):
upload_dir = folder_paths.get_temp_directory()
if not os.path.exists(upload_dir):
os.makedirs(upload_dir)
post = await request.post()
image = post.get("image")
if image and image.file:
filename = image.filename
if not filename:
return web.Response(status=400)
split = os.path.splitext(filename)
i = 1
while os.path.exists(os.path.join(upload_dir, filename)):
filename = f"{split[0]} ({i}){split[1]}"
i += 1
filepath = os.path.join(upload_dir, filename)
with open(filepath, "wb") as f:
f.write(image.file.read())
return web.json_response({"name": filename})
else:
return web.Response(status=400)
sam_predictor = None
default_sam_model_name = os.path.join(impact_pack.model_path, "sams", "sam_vit_b_01ec64.pth")
sam_lock = threading.Condition()
last_prepare_data = None
def async_prepare_sam(image_dir, model_name, filename):
with sam_lock:
global sam_predictor
if 'vit_h' in model_name:
model_kind = 'vit_h'
elif 'vit_l' in model_name:
model_kind = 'vit_l'
else:
model_kind = 'vit_b'
sam_model = sam_model_registry[model_kind](checkpoint=model_name)
sam_predictor = SamPredictor(sam_model)
image_path = os.path.join(image_dir, filename)
image = nodes.LoadImage().load_image(image_path)[0]
image = np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)
if impact.config.get_config()['sam_editor_cpu']:
device = 'cpu'
else:
device = comfy.model_management.get_torch_device()
sam_predictor.model.to(device=device)
sam_predictor.set_image(image, "RGB")
sam_predictor.model.cpu()
@server.PromptServer.instance.routes.post("/sam/prepare")
async def sam_prepare(request):
global sam_predictor
global last_prepare_data
data = await request.json()
with sam_lock:
if last_prepare_data is not None and last_prepare_data == data:
# already loaded: skip -- prevent redundant loading
return web.Response(status=200)
last_prepare_data = data
model_name = 'sam_vit_b_01ec64.pth'
if data['sam_model_name'] == 'auto':
model_name = impact.config.get_config()['sam_editor_model']
model_name = os.path.join(impact_pack.model_path, "sams", model_name)
print(f"[INFO] ComfyUI-Impact-Pack: Loading SAM model '{impact_pack.model_path}'")
filename, image_dir = folder_paths.annotated_filepath(data["filename"])
if image_dir is None:
typ = data['type'] if data['type'] != '' else 'output'
image_dir = folder_paths.get_directory_by_type(typ)
if data['subfolder'] is not None and data['subfolder'] != '':
image_dir += f"/{data['subfolder']}"
if image_dir is None:
return web.Response(status=400)
thread = threading.Thread(target=async_prepare_sam, args=(image_dir, model_name, filename,))
thread.start()
print(f"[INFO] ComfyUI-Impact-Pack: SAM model loaded. ")
@server.PromptServer.instance.routes.post("/sam/release")
async def release_sam(request):
global sam_predictor
with sam_lock:
del sam_predictor
sam_predictor = None
print(f"[INFO] ComfyUI-Impact-Pack: unloading SAM model")
@server.PromptServer.instance.routes.post("/sam/detect")
async def sam_detect(request):
global sam_predictor
with sam_lock:
if sam_predictor is not None:
if impact.config.get_config()['sam_editor_cpu']:
device = 'cpu'
else:
device = comfy.model_management.get_torch_device()
sam_predictor.model.to(device=device)
try:
data = await request.json()
positive_points = data['positive_points']
negative_points = data['negative_points']
threshold = data['threshold']
points = []
plabs = []
for p in positive_points:
points.append(p)
plabs.append(1)
for p in negative_points:
points.append(p)
plabs.append(0)
detected_masks = core.sam_predict(sam_predictor, points, plabs, None, threshold)
mask = core.combine_masks2(detected_masks)
if mask is None:
return web.Response(status=400)
image = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i[0], 0, 255).astype(np.uint8))
img_buffer = io.BytesIO()
img.save(img_buffer, format='png')
headers = {'Content-Type': 'image/png'}
finally:
sam_predictor.model.to(device="cpu")
return web.Response(body=img_buffer.getvalue(), headers=headers)
else:
return web.Response(status=400)
@server.PromptServer.instance.routes.get("/impact/wildcards/list")
async def wildcards_list(request):
data = {'data': impact.wildcards.get_wildcard_list()}
return web.json_response(data)
@server.PromptServer.instance.routes.post("/impact/wildcards")
async def populate_wildcards(request):
data = await request.json()
populated = wildcards.process(data['text'], data.get('seed', None))
return web.json_response({"text": populated})
segs_picker_map = {}
@server.PromptServer.instance.routes.get("/impact/segs/picker/count")
async def segs_picker_count(request):
node_id = request.rel_url.query.get('id', '')
if node_id in segs_picker_map:
res = len(segs_picker_map[node_id])
return web.Response(status=200, text=str(res))
return web.Response(status=400)
@server.PromptServer.instance.routes.get("/impact/segs/picker/view")
async def segs_picker(request):
node_id = request.rel_url.query.get('id', '')
idx = int(request.rel_url.query.get('idx', ''))
if node_id in segs_picker_map and idx < len(segs_picker_map[node_id]):
pil = segs_picker_map[node_id][idx]
image_bytes = BytesIO()
pil.save(image_bytes, format="PNG")
image_bytes.seek(0)
return web.Response(status=200, body=image_bytes, content_type='image/png', headers={"Content-Disposition": f"filename={node_id}{idx}.png"})
return web.Response(status=400)
@server.PromptServer.instance.routes.get("/view/validate")
async def view_validate(request):
if "filename" in request.rel_url.query:
filename = request.rel_url.query["filename"]
subfolder = request.rel_url.query["subfolder"]
filename, base_dir = folder_paths.annotated_filepath(filename)
if filename == '' or filename[0] == '/' or '..' in filename:
return web.Response(status=400)
if base_dir is None:
base_dir = folder_paths.get_input_directory()
file = os.path.join(base_dir, subfolder, filename)
if os.path.isfile(file):
return web.Response(status=200)
return web.Response(status=400)
@server.PromptServer.instance.routes.get("/impact/validate/pb_id_image")
async def view_validate(request):
if "id" in request.rel_url.query:
pb_id = request.rel_url.query["id"]
if pb_id not in core.preview_bridge_image_id_map:
return web.Response(status=400)
file = core.preview_bridge_image_id_map[pb_id]
if os.path.isfile(file):
return web.Response(status=200)
return web.Response(status=400)
@server.PromptServer.instance.routes.get("/impact/set/pb_id_image")
async def set_previewbridge_image(request):
if "filename" in request.rel_url.query:
node_id = request.rel_url.query["node_id"]
filename = request.rel_url.query["filename"]
path_type = request.rel_url.query["type"]
subfolder = request.rel_url.query["subfolder"]
filename, output_dir = folder_paths.annotated_filepath(filename)
if filename == '' or filename[0] == '/' or '..' in filename:
return web.Response(status=400)
if output_dir is None:
if path_type == 'input':
output_dir = folder_paths.get_input_directory()
elif path_type == 'output':
output_dir = folder_paths.get_output_directory()
else:
output_dir = folder_paths.get_temp_directory()
file = os.path.join(output_dir, subfolder, filename)
item = {
'filename': filename,
'type': path_type,
'subfolder': subfolder,
}
pb_id = core.set_previewbridge_image(node_id, file, item)
return web.Response(status=200, text=pb_id)
return web.Response(status=400)
@server.PromptServer.instance.routes.get("/impact/get/pb_id_image")
async def get_previewbridge_image(request):
if "id" in request.rel_url.query:
pb_id = request.rel_url.query["id"]
if pb_id in core.preview_bridge_image_id_map:
_, path_item = core.preview_bridge_image_id_map[pb_id]
return web.json_response(path_item)
return web.Response(status=400)
@server.PromptServer.instance.routes.get("/impact/view/pb_id_image")
async def view_previewbridge_image(request):
if "id" in request.rel_url.query:
pb_id = request.rel_url.query["id"]
if pb_id in core.preview_bridge_image_id_map:
file = core.preview_bridge_image_id_map[pb_id]
with Image.open(file) as img:
filename = os.path.basename(file)
return web.FileResponse(file, headers={"Content-Disposition": f"filename=\"{filename}\""})
return web.Response(status=400)
def onprompt_for_switch(json_data):
inversed_switch_info = {}
onprompt_switch_info = {}
for k, v in json_data['prompt'].items():
if 'class_type' not in v:
continue
cls = v['class_type']
if cls == 'ImpactInversedSwitch':
select_input = v['inputs']['select']
if isinstance(select_input, list) and len(select_input) == 2:
input_node = json_data['prompt'][select_input[0]]
if input_node['class_type'] == 'ImpactInt' and 'inputs' in input_node and 'value' in input_node['inputs']:
inversed_switch_info[k] = input_node['inputs']['value']
else:
inversed_switch_info[k] = select_input
elif cls in ['ImpactSwitch', 'LatentSwitch', 'SEGSSwitch', 'ImpactMakeImageList']:
if 'sel_mode' in v['inputs'] and v['inputs']['sel_mode']:
select_input = v['inputs']['select']
if isinstance(select_input, list) and len(select_input) == 2:
input_node = json_data['prompt'][select_input[0]]
if input_node['class_type'] == 'ImpactInt' and 'inputs' in input_node and 'value' in input_node['inputs']:
onprompt_switch_info[k] = input_node['inputs']['value']
if input_node['class_type'] == 'ImpactSwitch' and 'inputs' in input_node and 'select' in input_node['inputs']:
if isinstance(input_node['inputs']['select'], int):
onprompt_switch_info[k] = input_node['inputs']['select']
else:
print(f"\n##### ##### #####\n[WARN] {cls}: For the 'select' operation, only 'select_index' of the 'ImpactSwitch', which is not an input, or 'ImpactInt' and 'Primitive' are allowed as inputs.\n##### ##### #####\n")
else:
onprompt_switch_info[k] = select_input
for k, v in json_data['prompt'].items():
disable_targets = set()
for kk, vv in v['inputs'].items():
if isinstance(vv, list) and len(vv) == 2:
if vv[0] in inversed_switch_info:
if vv[1] + 1 != inversed_switch_info[vv[0]]:
disable_targets.add(kk)
if k in onprompt_switch_info:
selected_slot_name = f"input{onprompt_switch_info[k]}"
for kk, vv in v['inputs'].items():
if kk != selected_slot_name and kk.startswith('input'):
disable_targets.add(kk)
for kk in disable_targets:
del v['inputs'][kk]
return json_data
def onprompt_for_pickers(json_data):
detected_pickers = set()
for k, v in json_data['prompt'].items():
if 'class_type' not in v:
continue
cls = v['class_type']
if cls == 'ImpactSEGSPicker':
detected_pickers.add(k)
# garbage collection
keys_to_remove = [key for key in segs_picker_map if key not in detected_pickers]
for key in keys_to_remove:
del segs_picker_map[key]
def gc_preview_bridge_cache(json_data):
prompt_keys = json_data['prompt'].keys()
for key in list(core.preview_bridge_cache.keys()):
if key not in prompt_keys:
print(f"key deleted: {key}")
del core.preview_bridge_cache[key]
def workflow_imagereceiver_update(json_data):
prompt = json_data['prompt']
for v in prompt.values():
if 'class_type' in v and v['class_type'] == 'ImageReceiver':
if v['inputs']['save_to_workflow']:
v['inputs']['image'] = "#DATA"
def regional_sampler_seed_update(json_data):
prompt = json_data['prompt']
for k, v in prompt.items():
if 'class_type' in v and v['class_type'] == 'RegionalSampler':
seed_2nd_mode = v['inputs']['seed_2nd_mode']
new_seed = None
if seed_2nd_mode == 'increment':
new_seed = v['inputs']['seed_2nd']+1
if new_seed > 1125899906842624:
new_seed = 0
elif seed_2nd_mode == 'decrement':
new_seed = v['inputs']['seed_2nd']-1
if new_seed < 0:
new_seed = 1125899906842624
elif seed_2nd_mode == 'randomize':
new_seed = random.randint(0, 1125899906842624)
if new_seed is not None:
server.PromptServer.instance.send_sync("impact-node-feedback", {"node_id": k, "widget_name": "seed_2nd", "type": "INT", "value": new_seed})
def onprompt(json_data):
try:
json_data = onprompt_for_switch(json_data)
onprompt_for_pickers(json_data)
gc_preview_bridge_cache(json_data)
workflow_imagereceiver_update(json_data)
regional_sampler_seed_update(json_data)
except Exception as e:
print(f"[WARN] ComfyUI-Impact-Pack: Error on prompt - several features will not work.\n{e}")
return json_data
server.PromptServer.instance.add_on_prompt_handler(onprompt)