StupidGame's picture
Upload 1941 files
baa8e90
from PIL import Image, ImageDraw, ImageFilter
import torch
import numpy as np
from . import utils
def apply_variation_noise(latent_image, noise_device, variation_seed, variation_strength, mask=None):
latent_size = latent_image.size()
latent_size_1batch = [1, latent_size[1], latent_size[2], latent_size[3]]
if noise_device == "cpu":
variation_generator = torch.manual_seed(variation_seed)
else:
torch.cuda.manual_seed(variation_seed)
variation_generator = None
variation_latent = torch.randn(latent_size_1batch, dtype=latent_image.dtype, layout=latent_image.layout,
generator=variation_generator, device=noise_device)
variation_noise = variation_latent.expand(latent_image.size()[0], -1, -1, -1)
if variation_strength == 0:
return latent_image
elif mask is None:
result = (1 - variation_strength) * latent_image + variation_strength * variation_noise
else:
# this seems precision is not enough when variation_strength is 0.0
result = (mask == 1).float() * ((1 - variation_strength) * latent_image + variation_strength * variation_noise * mask) + (mask == 0).float() * latent_image
return result
def prepare_noise(latent_image, seed, noise_inds=None, noise_device="cpu", incremental_seed_mode="comfy", variation_seed=None, variation_strength=None):
"""
creates random noise given a latent image and a seed.
optional arg skip can be used to skip and discard x number of noise generations for a given seed
"""
latent_size = latent_image.size()
latent_size_1batch = [1, latent_size[1], latent_size[2], latent_size[3]]
if variation_strength is not None and variation_strength > 0 or incremental_seed_mode.startswith("variation str inc"):
if noise_device == "cpu":
variation_generator = torch.manual_seed(variation_seed)
else:
torch.cuda.manual_seed(variation_seed)
variation_generator = None
variation_latent = torch.randn(latent_size_1batch, dtype=latent_image.dtype, layout=latent_image.layout,
generator=variation_generator, device=noise_device)
else:
variation_latent = None
def apply_variation(input_latent, strength_up=None):
if variation_latent is None:
return input_latent
else:
strength = variation_strength
if strength_up is not None:
strength += strength_up
variation_noise = variation_latent.expand(input_latent.size()[0], -1, -1, -1)
result = (1 - strength) * input_latent + strength * variation_noise
return result
# method: incremental seed batch noise
if noise_inds is None and incremental_seed_mode == "incremental":
batch_cnt = latent_size[0]
latents = None
for i in range(batch_cnt):
if noise_device == "cpu":
generator = torch.manual_seed(seed+i)
else:
torch.cuda.manual_seed(seed+i)
generator = None
latent = torch.randn(latent_size_1batch, dtype=latent_image.dtype, layout=latent_image.layout,
generator=generator, device=noise_device)
latent = apply_variation(latent)
if latents is None:
latents = latent
else:
latents = torch.cat((latents, latent), dim=0)
return latents
# method: incremental variation batch noise
elif noise_inds is None and incremental_seed_mode.startswith("variation str inc"):
batch_cnt = latent_size[0]
latents = None
for i in range(batch_cnt):
if noise_device == "cpu":
generator = torch.manual_seed(seed)
else:
torch.cuda.manual_seed(seed)
generator = None
latent = torch.randn(latent_size_1batch, dtype=latent_image.dtype, layout=latent_image.layout,
generator=generator, device=noise_device)
step = float(incremental_seed_mode[18:])
latent = apply_variation(latent, step*i)
if latents is None:
latents = latent
else:
latents = torch.cat((latents, latent), dim=0)
return latents
# method: comfy batch noise
if noise_device == "cpu":
generator = torch.manual_seed(seed)
else:
torch.cuda.manual_seed(seed)
generator = None
if noise_inds is None:
latents = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout,
generator=generator, device=noise_device)
latents = apply_variation(latents)
return latents
unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
noises = []
for i in range(unique_inds[-1] + 1):
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout,
generator=generator, device=noise_device)
if i in unique_inds:
noises.append(noise)
noises = [noises[i] for i in inverse]
noises = torch.cat(noises, axis=0)
return noises
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
def empty_pil_tensor(w=64, h=64):
image = Image.new("RGB", (w, h))
draw = ImageDraw.Draw(image)
draw.rectangle((0, 0, w-1, h-1), fill=(0, 0, 0))
return pil2tensor(image)
def empty_latent():
return torch.zeros([1, 4, 8, 8])
# wildcard trick is taken from pythongossss's
class AnyType(str):
def __ne__(self, __value: object) -> bool:
return False
any_typ = AnyType("*")