|
import torch |
|
from . import a1111_compat |
|
import comfy |
|
|
|
class KSampler_progress(a1111_compat.KSampler_inspire): |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{"model": ("MODEL",), |
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), |
|
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), |
|
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), |
|
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), |
|
"positive": ("CONDITIONING", ), |
|
"negative": ("CONDITIONING", ), |
|
"latent_image": ("LATENT", ), |
|
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
"noise_mode": (["GPU(=A1111)", "CPU"],), |
|
"interval": ("INT", {"default": 1, "min": 1, "max": 10000}), |
|
"omit_start_latent": ("BOOLEAN", {"default": True, "label_on": "True", "label_off": "False"}), |
|
} |
|
} |
|
|
|
CATEGORY = "InspirePack/analysis" |
|
|
|
RETURN_TYPES = ("LATENT", "LATENT") |
|
RETURN_NAMES = ("latent", "progress_latent") |
|
|
|
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise, noise_mode, interval, omit_start_latent): |
|
adv_steps = int(steps / denoise) |
|
|
|
sampler = a1111_compat.KSamplerAdvanced_inspire() |
|
|
|
if omit_start_latent: |
|
result = [] |
|
else: |
|
result = [latent_image['samples']] |
|
|
|
for i in range(0, adv_steps+1): |
|
add_noise = i == 0 |
|
return_with_leftover_noise = i != adv_steps |
|
latent_image = sampler.sample(model, add_noise, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, i, i+1, noise_mode, return_with_leftover_noise)[0] |
|
if i % interval == 0 or i == adv_steps: |
|
result.append(latent_image['samples']) |
|
|
|
if len(result) > 0: |
|
result = torch.cat(result) |
|
result = {'samples': result} |
|
else: |
|
result = latent_image |
|
|
|
return (latent_image, result) |
|
|
|
|
|
class KSamplerAdvanced_progress(a1111_compat.KSamplerAdvanced_inspire): |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{"model": ("MODEL",), |
|
"add_noise": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}), |
|
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), |
|
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}), |
|
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), |
|
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), |
|
"positive": ("CONDITIONING", ), |
|
"negative": ("CONDITIONING", ), |
|
"latent_image": ("LATENT", ), |
|
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}), |
|
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}), |
|
"noise_mode": (["GPU(=A1111)", "CPU"],), |
|
"return_with_leftover_noise": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}), |
|
"interval": ("INT", {"default": 1, "min": 1, "max": 10000}), |
|
"omit_start_latent": ("BOOLEAN", {"default": False, "label_on": "True", "label_off": "False"}), |
|
}, |
|
"optional": {"prev_progress_latent_opt": ("LATENT",), } |
|
} |
|
|
|
FUNCTION = "sample" |
|
|
|
CATEGORY = "InspirePack/analysis" |
|
|
|
RETURN_TYPES = ("LATENT", "LATENT") |
|
RETURN_NAMES = ("latent", "progress_latent") |
|
|
|
def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, noise_mode, return_with_leftover_noise, interval, omit_start_latent, prev_progress_latent_opt=None): |
|
sampler = a1111_compat.KSamplerAdvanced_inspire() |
|
|
|
if omit_start_latent: |
|
result = [] |
|
else: |
|
result = [latent_image['samples']] |
|
|
|
for i in range(start_at_step, end_at_step+1): |
|
cur_add_noise = i == start_at_step and add_noise |
|
cur_return_with_leftover_noise = i != steps or return_with_leftover_noise |
|
latent_image = sampler.sample(model, cur_add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, i, i+1, noise_mode, cur_return_with_leftover_noise)[0] |
|
print(f"{i}, {i+1}") |
|
if i % interval == 0 or i == steps: |
|
result.append(latent_image['samples']) |
|
|
|
if len(result) > 0: |
|
result = torch.cat(result) |
|
result = {'samples': result} |
|
else: |
|
result = latent_image |
|
|
|
if prev_progress_latent_opt is not None: |
|
result['samples'] = torch.cat((prev_progress_latent_opt['samples'], result['samples']), dim=0) |
|
|
|
return (latent_image, result) |
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"KSamplerProgress //Inspire": KSampler_progress, |
|
"KSamplerAdvancedProgress //Inspire": KSamplerAdvanced_progress, |
|
} |
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"KSamplerProgress //Inspire": "KSampler Progress (Inspire)", |
|
"KSamplerAdvancedProgress //Inspire": "KSampler Advanced Progress (Inspire)", |
|
} |
|
|