StupidGame's picture
Upload 1941 files
baa8e90
import torch
import itertools
import numpy as np
def grouper(n, iterable):
it = iter(iterable)
while True:
chunk = list(itertools.islice(it, n))
if not chunk:
return
yield chunk
def create_batches(n, iterable):
groups = itertools.groupby(iterable, key= lambda x: (x[1], x[3]))
for _, x in groups:
for y in grouper(n, x):
yield y
def get_slice(tensor, h, h_len, w, w_len):
t = tensor.narrow(-2, h, h_len)
t = t.narrow(-1, w, w_len)
return t
def set_slice(tensor1,tensor2, h, h_len, w, w_len, mask=None):
if mask is not None:
tensor1[:,:,h:h+h_len,w:w+w_len] = tensor1[:,:,h:h+h_len,w:w+w_len] * (1 - mask) + tensor2 * mask
else:
tensor1[:,:,h:h+h_len,w:w+w_len] = tensor2
def get_tiles_and_masks_simple(steps, latent_shape, tile_height, tile_width):
latent_size_h = latent_shape[-2]
latent_size_w = latent_shape[-1]
tile_size_h = int(tile_height // 8)
tile_size_w = int(tile_width // 8)
h = np.arange(0,latent_size_h, tile_size_h)
w = np.arange(0,latent_size_w, tile_size_w)
def create_tile(hs, ws, i, j):
h = int(hs[i])
w = int(ws[j])
h_len = min(tile_size_h, latent_size_h - h)
w_len = min(tile_size_w, latent_size_w - w)
return (h, h_len, w, w_len, steps, None)
passes = [
[[create_tile(h, w, i, j) for i in range(len(h)) for j in range(len(w))]],
]
return passes
def get_tiles_and_masks_padded(steps, latent_shape, tile_height, tile_width):
batch_size = latent_shape[0]
latent_size_h = latent_shape[-2]
latent_size_w = latent_shape[-1]
tile_size_h = int(tile_height // 8)
tile_size_h = int((tile_size_h // 4) * 4)
tile_size_w = int(tile_width // 8)
tile_size_w = int((tile_size_w // 4) * 4)
#masks
mask_h = [0,tile_size_h // 4, tile_size_h - tile_size_h // 4, tile_size_h]
mask_w = [0,tile_size_w // 4, tile_size_w - tile_size_w // 4, tile_size_w]
masks = [[] for _ in range(3)]
for i in range(3):
for j in range(3):
mask = torch.zeros((batch_size,1,tile_size_h, tile_size_w), dtype=torch.float32, device='cpu')
mask[:,:,mask_h[i]:mask_h[i+1],mask_w[j]:mask_w[j+1]] = 1.0
masks[i].append(mask)
def create_mask(h_ind, w_ind, h_ind_max, w_ind_max, mask_h, mask_w, h_len, w_len):
mask = masks[1][1]
if not (h_ind == 0 or h_ind == h_ind_max or w_ind == 0 or w_ind == w_ind_max):
return get_slice(mask, 0, h_len, 0, w_len)
mask = mask.clone()
if h_ind == 0 and mask_h:
mask += masks[0][1]
if h_ind == h_ind_max and mask_h:
mask += masks[2][1]
if w_ind == 0 and mask_w:
mask += masks[1][0]
if w_ind == w_ind_max and mask_w:
mask += masks[1][2]
if h_ind == 0 and w_ind == 0 and mask_h and mask_w:
mask += masks[0][0]
if h_ind == 0 and w_ind == w_ind_max and mask_h and mask_w:
mask += masks[0][2]
if h_ind == h_ind_max and w_ind == 0 and mask_h and mask_w:
mask += masks[2][0]
if h_ind == h_ind_max and w_ind == w_ind_max and mask_h and mask_w:
mask += masks[2][2]
return get_slice(mask, 0, h_len, 0, w_len)
h = np.arange(0,latent_size_h, tile_size_h)
h_shift = np.arange(tile_size_h // 2, latent_size_h - tile_size_h // 2, tile_size_h)
w = np.arange(0,latent_size_w, tile_size_w)
w_shift = np.arange(tile_size_w // 2, latent_size_w - tile_size_h // 2, tile_size_w)
def create_tile(hs, ws, mask_h, mask_w, i, j):
h = int(hs[i])
w = int(ws[j])
h_len = min(tile_size_h, latent_size_h - h)
w_len = min(tile_size_w, latent_size_w - w)
mask = create_mask(i,j,len(hs)-1, len(ws)-1, mask_h, mask_w, h_len, w_len)
return (h, h_len, w, w_len, steps, mask)
passes = [
[[create_tile(h, w, True, True, i, j) for i in range(len(h)) for j in range(len(w))]],
[[create_tile(h_shift, w, False, True, i, j) for i in range(len(h_shift)) for j in range(len(w))]],
[[create_tile(h, w_shift, True, False, i, j) for i in range(len(h)) for j in range(len(w_shift))]],
[[create_tile(h_shift, w_shift, False, False, i,j) for i in range(len(h_shift)) for j in range(len(w_shift))]],
]
return passes
def mask_at_boundary(h, h_len, w, w_len, tile_size_h, tile_size_w, latent_size_h, latent_size_w, mask, device='cpu'):
tile_size_h = int(tile_size_h // 8)
tile_size_w = int(tile_size_w // 8)
if (h_len == tile_size_h or h_len == latent_size_h) and (w_len == tile_size_w or w_len == latent_size_w):
return h, h_len, w, w_len, mask
h_offset = min(0, latent_size_h - (h + tile_size_h))
w_offset = min(0, latent_size_w - (w + tile_size_w))
new_mask = torch.zeros((1,1,tile_size_h, tile_size_w), dtype=torch.float32, device=device)
new_mask[:,:,-h_offset:h_len if h_offset == 0 else tile_size_h, -w_offset:w_len if w_offset == 0 else tile_size_w] = 1.0 if mask is None else mask
return h + h_offset, tile_size_h, w + w_offset, tile_size_w, new_mask
def get_tiles_and_masks_rgrid(steps, latent_shape, tile_height, tile_width, generator):
def calc_coords(latent_size, tile_size, jitter):
tile_coords = int((latent_size + jitter - 1) // tile_size + 1)
tile_coords = [np.clip(tile_size * c - jitter, 0, latent_size) for c in range(tile_coords + 1)]
tile_coords = [(c1, c2-c1) for c1, c2 in zip(tile_coords, tile_coords[1:])]
return tile_coords
#calc stuff
batch_size = latent_shape[0]
latent_size_h = latent_shape[-2]
latent_size_w = latent_shape[-1]
tile_size_h = int(tile_height // 8)
tile_size_w = int(tile_width // 8)
tiles_all = []
for s in range(steps):
rands = torch.rand((2,), dtype=torch.float32, generator=generator, device='cpu').numpy()
jitter_w1 = int(rands[0] * tile_size_w)
jitter_w2 = int(((rands[0] + .5) % 1.0) * tile_size_w)
jitter_h1 = int(rands[1] * tile_size_h)
jitter_h2 = int(((rands[1] + .5) % 1.0) * tile_size_h)
#calc number of tiles
tiles_h = [
calc_coords(latent_size_h, tile_size_h, jitter_h1),
calc_coords(latent_size_h, tile_size_h, jitter_h2)
]
tiles_w = [
calc_coords(latent_size_w, tile_size_w, jitter_w1),
calc_coords(latent_size_w, tile_size_w, jitter_w2)
]
tiles = []
if s % 2 == 0:
for i, h in enumerate(tiles_h[0]):
for w in tiles_w[i%2]:
tiles.append((int(h[0]), int(h[1]), int(w[0]), int(w[1]), 1, None))
else:
for i, w in enumerate(tiles_w[0]):
for h in tiles_h[i%2]:
tiles.append((int(h[0]), int(h[1]), int(w[0]), int(w[1]), 1, None))
tiles_all.append(tiles)
return [tiles_all]