|
import sys |
|
import contextlib |
|
import torch |
|
from . import shared |
|
from comfy import model_management |
|
|
|
if sys.platform == "darwin": |
|
from . import mac_specific |
|
|
|
|
|
def has_mps() -> bool: |
|
if sys.platform != "darwin": |
|
return False |
|
else: |
|
return mac_specific.has_mps |
|
|
|
cpu = torch.device("cpu") |
|
device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None |
|
dtype = torch.float16 |
|
dtype_vae = torch.float16 |
|
dtype_unet = torch.float16 |
|
unet_needs_upcast = False |
|
|
|
def cond_cast_unet(input): |
|
return input.to(dtype_unet) if unet_needs_upcast else input |
|
|
|
|
|
def cond_cast_float(input): |
|
return input.float() if unet_needs_upcast else input |
|
|
|
|
|
def randn(seed, shape): |
|
from modules.shared import opts |
|
|
|
torch.manual_seed(seed) |
|
if opts.randn_source == "CPU" or device.type == 'mps': |
|
return torch.randn(shape, device=cpu).to(device) |
|
return torch.randn(shape, device=device) |
|
|
|
|
|
def randn_without_seed(shape): |
|
from modules.shared import opts |
|
|
|
if opts.randn_source == "CPU" or device.type == 'mps': |
|
return torch.randn(shape, device=cpu).to(device) |
|
return torch.randn(shape, device=device) |
|
|
|
def autocast(disable=False): |
|
if disable: |
|
return contextlib.nullcontext() |
|
|
|
if dtype == torch.float32 or model_management.get_torch_device() == torch.device("mps"): |
|
return contextlib.nullcontext() |
|
|
|
|
|
autocast_device = model_management.get_autocast_device(model_management.get_torch_device()) |
|
|
|
return torch.autocast(autocast_device) |
|
|
|
def without_autocast(disable=False): |
|
return torch.autocast("cuda", enabled=False) if torch.is_autocast_enabled() and not disable else contextlib.nullcontext() |
|
|
|
class NansException(Exception): |
|
pass |
|
|
|
def test_for_nans(x, where): |
|
if shared.opts.disable_nan_check: |
|
return |
|
if not torch.all(torch.isnan(x)).item(): |
|
return |
|
if where == "unet": |
|
message = "A tensor with all NaNs was produced in Unet." |
|
if not shared.opts.no_half: |
|
message += " This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try setting the \"Upcast cross attention layer to float32\" option in Settings > Stable Diffusion or using the --no-half commandline argument to fix this." |
|
elif where == "vae": |
|
message = "A tensor with all NaNs was produced in VAE." |
|
if not shared.opts.no_half and not shared.opts.no_half_vae: |
|
message += " This could be because there's not enough precision to represent the picture. Try adding --no-half-vae commandline argument to fix this." |
|
else: |
|
message = "A tensor with all NaNs was produced." |
|
message += " Use --disable-nan-check commandline argument to disable this check." |
|
raise NansException(message) |
|
|