|
import torch |
|
from . import devices |
|
from . import prompt_parser |
|
from . import shared |
|
from comfy import model_management |
|
def catenate_conds(conds): |
|
if not isinstance(conds[0], dict): |
|
return torch.cat(conds) |
|
|
|
return {key: torch.cat([x[key] for x in conds]) for key in conds[0].keys()} |
|
|
|
|
|
def subscript_cond(cond, a, b): |
|
if not isinstance(cond, dict): |
|
return cond[a:b] |
|
|
|
return {key: vec[a:b] for key, vec in cond.items()} |
|
|
|
|
|
def pad_cond(tensor, repeats, empty): |
|
if not isinstance(tensor, dict): |
|
return torch.cat([tensor, empty.repeat((tensor.shape[0], repeats, 1)).to(device=tensor.device)], axis=1) |
|
|
|
tensor['crossattn'] = pad_cond(tensor['crossattn'], repeats, empty) |
|
return tensor |
|
|
|
|
|
class CFGDenoiser(torch.nn.Module): |
|
""" |
|
Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet) |
|
that can take a noisy picture and produce a noise-free picture using two guidances (prompts) |
|
instead of one. Originally, the second prompt is just an empty string, but we use non-empty |
|
negative prompt. |
|
""" |
|
|
|
def __init__(self, model): |
|
super().__init__() |
|
self.inner_model = model |
|
self.model_wrap = None |
|
self.mask = None |
|
self.nmask = None |
|
self.init_latent = None |
|
self.steps = None |
|
"""number of steps as specified by user in UI""" |
|
|
|
self.total_steps = None |
|
"""expected number of calls to denoiser calculated from self.steps and specifics of the selected sampler""" |
|
|
|
self.step = 0 |
|
self.image_cfg_scale = None |
|
self.padded_cond_uncond = False |
|
self.sampler = None |
|
self.model_wrap = None |
|
self.p = None |
|
self.mask_before_denoising = False |
|
import comfy |
|
import inspect |
|
apply_model_src = inspect.getsource(comfy.model_base.BaseModel.apply_model_orig) |
|
self.c_crossattn_as_list = 'torch.cat(c_crossattn, 1)' in apply_model_src |
|
|
|
|
|
|
|
|
|
|
|
def combine_denoised(self, x_out, conds_list, uncond, cond_scale): |
|
denoised_uncond = x_out[-uncond.shape[0]:] |
|
denoised = torch.clone(denoised_uncond) |
|
|
|
for i, conds in enumerate(conds_list): |
|
for cond_index, weight in conds: |
|
denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale) |
|
|
|
return denoised |
|
|
|
def combine_denoised_for_edit_model(self, x_out, cond_scale): |
|
out_cond, out_img_cond, out_uncond = x_out.chunk(3) |
|
denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond) |
|
|
|
return denoised |
|
|
|
def get_pred_x0(self, x_in, x_out, sigma): |
|
return x_out |
|
|
|
def update_inner_model(self): |
|
self.model_wrap = None |
|
|
|
c, uc = self.p.get_conds() |
|
self.sampler.sampler_extra_args['cond'] = c |
|
self.sampler.sampler_extra_args['uncond'] = uc |
|
|
|
def make_condition_dict(self, x, d): |
|
if x.c_adm is not None: |
|
k = x.c_adm['key'] |
|
d[k] = x.c_adm[k] |
|
d['c_crossattn'] = d['c_crossattn'].to(device=x.device) |
|
return d |
|
|
|
def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond): |
|
model_management.throw_exception_if_processing_interrupted() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
is_edit_model = False |
|
|
|
conds_list, tensor = cond |
|
assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)" |
|
|
|
if self.mask_before_denoising and self.mask is not None: |
|
x = self.init_latent * self.mask + self.nmask * x |
|
|
|
batch_size = len(conds_list) |
|
repeats = [len(conds_list[i]) for i in range(batch_size)] |
|
if not hasattr(x, 'c_adm'): |
|
x.c_adm = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if False: |
|
image_uncond = torch.zeros_like(image_cond) |
|
if self.c_crossattn_as_list: |
|
make_condition_dict = lambda c_crossattn: {"c_crossattn": [ctn.to(device=self.device) for ctn in c_crossattn] if type(c_crossattn) is list else [c_crossattn.to(device=self.device)], 'transformer_options': {'from_smZ': True}} |
|
else: |
|
make_condition_dict = lambda c_crossattn: {"c_crossattn": c_crossattn, 'transformer_options': {'from_smZ': True}} |
|
else: |
|
image_uncond = image_cond |
|
if isinstance(uncond, dict): |
|
make_condition_dict = lambda c_crossattn, c_concat: {**c_crossattn, "c_concat": None, 'transformer_options': {'from_smZ': True}} |
|
else: |
|
if self.c_crossattn_as_list: |
|
make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": c_crossattn if type(c_crossattn) is list else [c_crossattn], "c_concat": None, 'transformer_options': {'from_smZ': True}} |
|
else: |
|
make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": c_crossattn, "c_concat": None, 'transformer_options': {'from_smZ': True}} |
|
|
|
_make_condition_dict = make_condition_dict |
|
make_condition_dict = lambda *a, **kwa: self.make_condition_dict(x, _make_condition_dict(*a, **kwa)) |
|
|
|
if not is_edit_model: |
|
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) |
|
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) |
|
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond]) |
|
else: |
|
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x]) |
|
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma]) |
|
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
skip_uncond = False |
|
|
|
|
|
if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model: |
|
skip_uncond = True |
|
x_in = x_in[:-batch_size] |
|
sigma_in = sigma_in[:-batch_size] |
|
|
|
self.padded_cond_uncond = False |
|
if shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]: |
|
empty = shared.sd_model.cond_stage_model_empty_prompt |
|
num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1] |
|
|
|
if num_repeats < 0: |
|
tensor = pad_cond(tensor, -num_repeats, empty) |
|
self.padded_cond_uncond = True |
|
elif num_repeats > 0: |
|
uncond = pad_cond(uncond, num_repeats, empty) |
|
self.padded_cond_uncond = True |
|
|
|
if tensor.shape[1] == uncond.shape[1] or skip_uncond: |
|
if is_edit_model: |
|
cond_in = catenate_conds([tensor, uncond, uncond]) |
|
elif skip_uncond: |
|
cond_in = tensor |
|
else: |
|
cond_in = catenate_conds([tensor, uncond]) |
|
|
|
if shared.opts.batch_cond_uncond: |
|
x_out = self.inner_model(x_in, sigma_in, **make_condition_dict(cond_in, image_cond_in)) |
|
else: |
|
x_out = torch.zeros_like(x_in) |
|
for batch_offset in range(0, x_out.shape[0], batch_size): |
|
a = batch_offset |
|
b = a + batch_size |
|
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], **make_condition_dict(subscript_cond(cond_in, a, b), image_cond_in[a:b])) |
|
else: |
|
x_out = torch.zeros_like(x_in) |
|
batch_size = batch_size*2 if shared.opts.batch_cond_uncond else batch_size |
|
for batch_offset in range(0, tensor.shape[0], batch_size): |
|
a = batch_offset |
|
b = min(a + batch_size, tensor.shape[0]) |
|
|
|
if not is_edit_model: |
|
c_crossattn = subscript_cond(tensor, a, b) |
|
else: |
|
c_crossattn = torch.cat([tensor[a:b]], uncond) |
|
|
|
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], **make_condition_dict(c_crossattn, image_cond_in[a:b])) |
|
|
|
if not skip_uncond: |
|
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], **make_condition_dict(uncond, image_cond_in[-uncond.shape[0]:])) |
|
|
|
denoised_image_indexes = [x[0][0] for x in conds_list] |
|
if skip_uncond: |
|
fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes]) |
|
x_out = torch.cat([x_out, fake_uncond]) |
|
|
|
|
|
|
|
|
|
devices.test_for_nans(x_out, "unet") |
|
|
|
if is_edit_model: |
|
denoised = self.combine_denoised_for_edit_model(x_out, cond_scale) |
|
elif skip_uncond: |
|
denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0) |
|
else: |
|
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) |
|
|
|
if not self.mask_before_denoising and self.mask is not None: |
|
denoised = self.init_latent * self.mask + self.nmask * denoised |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.step += 1 |
|
del x_out |
|
return denoised |
|
|