import comfy import torch import numpy as np import latent_preview from .libs import utils def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, noise_mode="CPU", disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, incremental_seed_mode="comfy", variation_seed=None, variation_strength=None, noise=None): device = comfy.model_management.get_torch_device() noise_device = "cpu" if noise_mode == "CPU" else device latent_image = latent["samples"] if noise is None: if disable_noise: noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device=noise_device) else: batch_inds = latent["batch_index"] if "batch_index" in latent else None noise = utils.prepare_noise(latent_image, seed, batch_inds, noise_device, incremental_seed_mode, variation_seed=variation_seed, variation_strength=variation_strength) noise_mask = None if "noise_mask" in latent: noise_mask = latent["noise_mask"] preview_format = "JPEG" if preview_format not in ["JPEG", "PNG"]: preview_format = "JPEG" previewer = latent_preview.get_previewer(device, model.model.latent_format) pbar = comfy.utils.ProgressBar(steps) def callback(step, x0, x, total_steps): preview_bytes = None if previewer: preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0) pbar.update_absolute(step + 1, total_steps, preview_bytes) samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed) out = latent.copy() out["samples"] = samples return (out, ) class KSampler_inspire: @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL",), "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "latent_image": ("LATENT", ), "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), "noise_mode": (["GPU(=A1111)", "CPU"],), "batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],), "variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), } } RETURN_TYPES = ("LATENT",) FUNCTION = "sample" CATEGORY = "InspirePack/a1111_compat" def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise, noise_mode, batch_seed_mode="comfy", variation_seed=None, variation_strength=None): return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise, noise_mode, incremental_seed_mode=batch_seed_mode, variation_seed=variation_seed, variation_strength=variation_strength) class KSamplerAdvanced_inspire: @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL",), "add_noise": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}), "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}), "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "latent_image": ("LATENT", ), "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}), "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}), "noise_mode": (["GPU(=A1111)", "CPU"],), "return_with_leftover_noise": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}), "batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],), "variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), }, "optional": { "noise_opt": ("NOISE",), } } RETURN_TYPES = ("LATENT",) FUNCTION = "sample" CATEGORY = "InspirePack/a1111_compat" def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, noise_mode, return_with_leftover_noise, denoise=1.0, batch_seed_mode="comfy", variation_seed=None, variation_strength=None, noise_opt=None): force_full_denoise = True if return_with_leftover_noise: force_full_denoise = False disable_noise = False if not add_noise: disable_noise = True return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise, noise_mode=noise_mode, incremental_seed_mode=batch_seed_mode, variation_seed=variation_seed, variation_strength=variation_strength, noise=noise_opt) NODE_CLASS_MAPPINGS = { "KSampler //Inspire": KSampler_inspire, "KSamplerAdvanced //Inspire": KSamplerAdvanced_inspire, } NODE_DISPLAY_NAME_MAPPINGS = { "KSampler //Inspire": "KSampler (inspire)", "KSamplerAdvanced //Inspire": "KSamplerAdvanced (inspire)" }