import torch class ReferenceOnlySimple: @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL",), "reference": ("LATENT",), "batch_size": ("INT", {"default": 1, "min": 1, "max": 64}) }} RETURN_TYPES = ("MODEL", "LATENT") FUNCTION = "reference_only" CATEGORY = "custom_node_experiments" def reference_only(self, model, reference, batch_size): model_reference = model.clone() size_latent = list(reference["samples"].shape) size_latent[0] = batch_size latent = {} latent["samples"] = torch.zeros(size_latent) batch = latent["samples"].shape[0] + reference["samples"].shape[0] def reference_apply(q, k, v, extra_options): k = k.clone().repeat(1, 2, 1) offset = 0 if q.shape[0] > batch: offset = batch for o in range(0, q.shape[0], batch): for x in range(1, batch): k[x + o, q.shape[1]:] = q[o,:] return q, k, k model_reference.set_model_attn1_patch(reference_apply) out_latent = torch.cat((reference["samples"], latent["samples"])) if "noise_mask" in latent: mask = latent["noise_mask"] else: mask = torch.ones((64,64), dtype=torch.float32, device="cpu") if len(mask.shape) < 3: mask = mask.unsqueeze(0) if mask.shape[0] < latent["samples"].shape[0]: print(latent["samples"].shape, mask.shape) mask = mask.repeat(latent["samples"].shape[0], 1, 1) out_mask = torch.zeros((1,mask.shape[1],mask.shape[2]), dtype=torch.float32, device="cpu") return (model_reference, {"samples": out_latent, "noise_mask": torch.cat((out_mask, mask))}) NODE_CLASS_MAPPINGS = { "ReferenceOnlySimple": ReferenceOnlySimple, }