import torch class ModelSamplerTonemapNoiseTest: @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL",), "multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}), }} RETURN_TYPES = ("MODEL",) FUNCTION = "patch" CATEGORY = "custom_node_experiments" def patch(self, model, multiplier): def sampler_tonemap_reinhard(args): cond = args["cond"] uncond = args["uncond"] cond_scale = args["cond_scale"] noise_pred = (cond - uncond) noise_pred_vector_magnitude = (torch.linalg.vector_norm(noise_pred, dim=(1)) + 0.0000000001)[:,None] noise_pred /= noise_pred_vector_magnitude mean = torch.mean(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True) std = torch.std(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True) top = (std * 3 + mean) * multiplier #reinhard noise_pred_vector_magnitude *= (1.0 / top) new_magnitude = noise_pred_vector_magnitude / (noise_pred_vector_magnitude + 1.0) new_magnitude *= top return uncond + noise_pred * new_magnitude * cond_scale m = model.clone() m.set_model_sampler_cfg_function(sampler_tonemap_reinhard) return (m, ) NODE_CLASS_MAPPINGS = { "ModelSamplerTonemapNoiseTest": ModelSamplerTonemapNoiseTest, }