from ..utils import common_annotator_call, annotator_ckpts_path, ANIFACESEG_MODEL_NAME, create_node_input_types import comfy.model_management as model_management import torch from einops import rearrange class AnimeFace_SemSegPreprocessor: @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",) }, "optional": { #This preprocessor is only trained on 512x resolution #https://github.com/siyeong0/Anime-Face-Segmentation/blob/main/predict.py#L25 "remove_background_using_abg": ("BOOLEAN", {"default": True}), "resolution": ("INT", {"default": 512, "min": 512, "max": 512, "step": 64}) } } RETURN_TYPES = ("IMAGE", "MASK") RETURN_NAMES = ("IMAGE", "ABG_CHARACTER_MASK (MASK)") FUNCTION = "execute" CATEGORY = "ControlNet Preprocessors/Semantic Segmentation" def execute(self, image, remove_background_using_abg=True, resolution=512, **kwargs): from controlnet_aux.anime_face_segment import AnimeFaceSegmentor model = AnimeFaceSegmentor.from_pretrained(ANIFACESEG_MODEL_NAME, cache_dir=annotator_ckpts_path).to(model_management.get_torch_device()) if remove_background_using_abg: out_image_with_mask = common_annotator_call(model, image, resolution=resolution, remove_background=True) out_image = out_image_with_mask[..., :3] mask = out_image_with_mask[..., 3:] mask = rearrange(mask, "n h w c -> n c h w") else: out_image = common_annotator_call(model, image, resolution=resolution, remove_background=False) N, H, W, C = out_image.shape mask = torch.ones(N, C, H, W) del model return (out_image, mask) NODE_CLASS_MAPPINGS = { "AnimeFace_SemSegPreprocessor": AnimeFace_SemSegPreprocessor } NODE_DISPLAY_NAME_MAPPINGS = { "AnimeFace_SemSegPreprocessor": "Anime Face Segmentor" }