from ..utils import common_annotator_call, annotator_ckpts_path, HF_MODEL_NAME, create_node_input_types import comfy.model_management as model_management class OneFormer_COCO_SemSegPreprocessor: @classmethod def INPUT_TYPES(s): return create_node_input_types() RETURN_TYPES = ("IMAGE",) FUNCTION = "semantic_segmentate" CATEGORY = "ControlNet Preprocessors/Semantic Segmentation" def semantic_segmentate(self, image, resolution=512): from controlnet_aux.oneformer import OneformerSegmentor model = OneformerSegmentor.from_pretrained(HF_MODEL_NAME, "150_16_swin_l_oneformer_coco_100ep.pth", cache_dir=annotator_ckpts_path) model = model.to(model_management.get_torch_device()) out = common_annotator_call(model, image, resolution=resolution) del model return (out,) class OneFormer_ADE20K_SemSegPreprocessor: @classmethod def INPUT_TYPES(s): return create_node_input_types() RETURN_TYPES = ("IMAGE",) FUNCTION = "semantic_segmentate" CATEGORY = "ControlNet Preprocessors/Semantic Segmentation" def semantic_segmentate(self, image, resolution=512): from controlnet_aux.oneformer import OneformerSegmentor model = OneformerSegmentor.from_pretrained(HF_MODEL_NAME, "250_16_swin_l_oneformer_ade20k_160k.pth", cache_dir=annotator_ckpts_path) model = model.to(model_management.get_torch_device()) out = common_annotator_call(model, image, resolution=resolution) del model return (out,) NODE_CLASS_MAPPINGS = { "OneFormer-COCO-SemSegPreprocessor": OneFormer_COCO_SemSegPreprocessor, "OneFormer-ADE20K-SemSegPreprocessor": OneFormer_ADE20K_SemSegPreprocessor } NODE_DISPLAY_NAME_MAPPINGS = { "OneFormer-COCO-SemSegPreprocessor": "OneFormer COCO Segmentor", "OneFormer-ADE20K-SemSegPreprocessor": "OneFormer ADE20K Segmentor" }