# Copyright (c) OpenMMLab. All rights reserved. import cv2 import numpy as np from .dw_onnx.cv_ox_det import inference_detector as inference_onnx_yolox from .dw_onnx.cv_ox_yolo_nas import inference_detector as inference_onnx_yolo_nas from .dw_onnx.cv_ox_pose import inference_pose as inference_onnx_pose from .dw_torchscript.jit_det import inference_detector as inference_jit_yolox from .dw_torchscript.jit_pose import inference_pose as inference_jit_pose from typing import List, Optional from .types import PoseResult, BodyResult, Keypoint from timeit import default_timer import os from controlnet_aux.dwpose.util import guess_onnx_input_shape_dtype, get_model_type, get_ort_providers, is_model_torchscript import torch import torch.utils.benchmark.utils.timer as torch_timer class Wholebody: def __init__(self, det_model_path: Optional[str] = None, pose_model_path: Optional[str] = None, torchscript_device="cuda"): self.det_filename = det_model_path and os.path.basename(det_model_path) self.pose_filename = pose_model_path and os.path.basename(pose_model_path) self.det, self.pose = None, None # return type: None ort cv2 torchscript self.det_model_type = get_model_type("DWPose",self.det_filename) self.pose_model_type = get_model_type("DWPose",self.pose_filename) # Always loads to CPU to avoid building OpenCV. cv2_device = 'cpu' cv2_backend = cv2.dnn.DNN_BACKEND_OPENCV if cv2_device == 'cpu' else cv2.dnn.DNN_BACKEND_CUDA # You need to manually build OpenCV through cmake to work with your GPU. cv2_providers = cv2.dnn.DNN_TARGET_CPU if cv2_device == 'cpu' else cv2.dnn.DNN_TARGET_CUDA ort_providers = get_ort_providers() if self.det_model_type is None: pass elif self.det_model_type == "ort": try: import onnxruntime as ort self.det = ort.InferenceSession(det_model_path, providers=ort_providers) except: print(f"Failed to load onnxruntime with {self.det.get_providers()}.\nPlease change EP_list in the config.yaml and restart ComfyUI") self.det = ort.InferenceSession(det_model_path, providers=["CPUExecutionProvider"]) elif self.det_model_type == "cv2": try: self.det = cv2.dnn.readNetFromONNX(det_model_path) self.det.setPreferableBackend(cv2_backend) self.det.setPreferableTarget(cv2_providers) except: print("TopK operators may not work on your OpenCV, try use onnxruntime with CPUExecutionProvider") try: import onnxruntime as ort self.det = ort.InferenceSession(det_model_path, providers=["CPUExecutionProvider"]) except: print(f"Failed to load {det_model_path}, you can use other models instead") else: self.det = torch.jit.load(det_model_path) self.det.to(torchscript_device) if self.pose_model_type is None: pass elif self.pose_model_type == "ort": try: import onnxruntime as ort self.pose = ort.InferenceSession(pose_model_path, providers=ort_providers) except: print(f"Failed to load onnxruntime with {self.pose.get_providers()}.\nPlease change EP_list in the config.yaml and restart ComfyUI") self.pose = ort.InferenceSession(pose_model_path, providers=["CPUExecutionProvider"]) elif self.pose_model_type == "cv2": self.pose = cv2.dnn.readNetFromONNX(pose_model_path) self.pose.setPreferableBackend(cv2_backend) self.pose.setPreferableTarget(cv2_providers) else: self.pose = torch.jit.load(pose_model_path) self.pose.to(torchscript_device) if self.pose_filename is not None: self.pose_input_size, _ = guess_onnx_input_shape_dtype(self.pose_filename) def __call__(self, oriImg) -> Optional[np.ndarray]: if is_model_torchscript(self.det): det_start = torch_timer.timer() det_result = inference_jit_yolox(self.det, oriImg, detect_classes=[0]) print(f"DWPose: Bbox {((torch_timer.timer() - det_start) * 1000):.2f}ms") else: det_start = default_timer() if "yolox" in self.det_filename: det_result = inference_onnx_yolox(self.det, oriImg, detect_classes=[0], dtype=np.float32) else: #FP16 and INT8 YOLO NAS accept uint8 input det_result = inference_onnx_yolo_nas(self.det, oriImg, detect_classes=[0], dtype=np.uint8) print(f"DWPose: Bbox {((default_timer() - det_start) * 1000):.2f}ms") if (det_result is None) or (det_result.shape[0] == 0): return None if is_model_torchscript(self.pose): pose_start = torch_timer.timer() keypoints, scores = inference_jit_pose(self.pose, det_result, oriImg, self.pose_input_size) print(f"DWPose: Pose {((torch_timer.timer() - pose_start) * 1000):.2f}ms on {det_result.shape[0]} people\n") else: pose_start = default_timer() _, pose_onnx_dtype = guess_onnx_input_shape_dtype(self.pose_filename) keypoints, scores = inference_onnx_pose(self.pose, det_result, oriImg, self.pose_input_size, dtype=pose_onnx_dtype) print(f"DWPose: Pose {((default_timer() - pose_start) * 1000):.2f}ms on {det_result.shape[0]} people\n") keypoints_info = np.concatenate( (keypoints, scores[..., None]), axis=-1) # compute neck joint neck = np.mean(keypoints_info[:, [5, 6]], axis=1) # neck score when visualizing pred neck[:, 2:4] = np.logical_and( keypoints_info[:, 5, 2:4] > 0.3, keypoints_info[:, 6, 2:4] > 0.3).astype(int) new_keypoints_info = np.insert( keypoints_info, 17, neck, axis=1) mmpose_idx = [ 17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3 ] openpose_idx = [ 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17 ] new_keypoints_info[:, openpose_idx] = \ new_keypoints_info[:, mmpose_idx] keypoints_info = new_keypoints_info return keypoints_info @staticmethod def format_result(keypoints_info: Optional[np.ndarray]) -> List[PoseResult]: def format_keypoint_part( part: np.ndarray, ) -> Optional[List[Optional[Keypoint]]]: keypoints = [ Keypoint(x, y, score, i) if score >= 0.3 else None for i, (x, y, score) in enumerate(part) ] return ( None if all(keypoint is None for keypoint in keypoints) else keypoints ) def total_score(keypoints: Optional[List[Optional[Keypoint]]]) -> float: return ( sum(keypoint.score for keypoint in keypoints if keypoint is not None) if keypoints is not None else 0.0 ) pose_results = [] if keypoints_info is None: return pose_results for instance in keypoints_info: body_keypoints = format_keypoint_part(instance[:18]) or ([None] * 18) left_hand = format_keypoint_part(instance[92:113]) right_hand = format_keypoint_part(instance[113:134]) face = format_keypoint_part(instance[24:92]) # Openpose face consists of 70 points in total, while DWPose only # provides 68 points. Padding the last 2 points. if face is not None: # left eye face.append(body_keypoints[14]) # right eye face.append(body_keypoints[15]) body = BodyResult( body_keypoints, total_score(body_keypoints), len(body_keypoints) ) pose_results.append(PoseResult(body, left_hand, right_hand, face)) return pose_results