import torch import cv2 import numpy as np from PIL import Image, ImageDraw, ImageFilter import folder_paths from . import config LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) def pil2numpy(image): return (np.array(image).astype(np.float32) / 255.0)[np.newaxis, :, :, :] def pil2tensor(image): return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0) def tensor2pil(image): return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) def center_of_bbox(bbox): w, h = bbox[2] - bbox[0], bbox[3] - bbox[1] return bbox[0] + w/2, bbox[1] + h/2 def combine_masks(masks): if len(masks) == 0: return None else: initial_cv2_mask = np.array(masks[0][1]) combined_cv2_mask = initial_cv2_mask for i in range(1, len(masks)): cv2_mask = np.array(masks[i][1]) if combined_cv2_mask.shape == cv2_mask.shape: combined_cv2_mask = cv2.bitwise_or(combined_cv2_mask, cv2_mask) else: # do nothing - incompatible mask pass mask = torch.from_numpy(combined_cv2_mask) return mask def combine_masks2(masks): if len(masks) == 0: return None else: initial_cv2_mask = np.array(masks[0]).astype(np.uint8) combined_cv2_mask = initial_cv2_mask for i in range(1, len(masks)): cv2_mask = np.array(masks[i]).astype(np.uint8) if combined_cv2_mask.shape == cv2_mask.shape: combined_cv2_mask = cv2.bitwise_or(combined_cv2_mask, cv2_mask) else: # do nothing - incompatible mask pass mask = torch.from_numpy(combined_cv2_mask) return mask def bitwise_and_masks(mask1, mask2): mask1 = mask1.cpu() mask2 = mask2.cpu() cv2_mask1 = np.array(mask1) cv2_mask2 = np.array(mask2) if cv2_mask1.shape == cv2_mask2.shape: cv2_mask = cv2.bitwise_and(cv2_mask1, cv2_mask2) return torch.from_numpy(cv2_mask) else: # do nothing - incompatible mask shape: mostly empty mask return mask1 def to_binary_mask(mask, threshold=0): if len(mask.shape) == 3: mask = mask.squeeze(0) mask = mask.clone().cpu() mask[mask > threshold] = 1. mask[mask <= threshold] = 0. return mask def use_gpu_opencv(): return not config.get_config()['disable_gpu_opencv'] def dilate_mask(mask, dilation_factor, iter=1): if dilation_factor == 0: return mask if len(mask.shape) == 3: mask = mask.squeeze(0) kernel = np.ones((abs(dilation_factor), abs(dilation_factor)), np.uint8) if use_gpu_opencv(): mask = cv2.UMat(mask) kernel = cv2.UMat(kernel) if dilation_factor > 0: result = cv2.dilate(mask, kernel, iter) else: result = cv2.erode(mask, kernel, iter) if use_gpu_opencv(): return result.get() else: return result def dilate_masks(segmasks, dilation_factor, iter=1): if dilation_factor == 0: return segmasks dilated_masks = [] kernel = np.ones((abs(dilation_factor), abs(dilation_factor)), np.uint8) if use_gpu_opencv(): kernel = cv2.UMat(kernel) for i in range(len(segmasks)): cv2_mask = segmasks[i][1] if use_gpu_opencv(): cv2_mask = cv2.UMat(cv2_mask) if dilation_factor > 0: dilated_mask = cv2.dilate(cv2_mask, kernel, iter) else: dilated_mask = cv2.erode(cv2_mask, kernel, iter) if use_gpu_opencv(): dilated_mask = dilated_mask.get() item = (segmasks[i][0], dilated_mask, segmasks[i][2]) dilated_masks.append(item) return dilated_masks def feather_mask(mask, thickness, base_alpha=255): pil_mask = Image.fromarray(np.uint8(mask * base_alpha)) # Create a feathered mask by applying a Gaussian blur to the mask blurred_mask = pil_mask.filter(ImageFilter.GaussianBlur(thickness)) feathered_mask = Image.new("L", pil_mask.size, 0) feathered_mask.paste(blurred_mask, (0, 0), blurred_mask) return feathered_mask def subtract_masks(mask1, mask2): mask1 = mask1.cpu() mask2 = mask2.cpu() cv2_mask1 = np.array(mask1) * 255 cv2_mask2 = np.array(mask2) * 255 if cv2_mask1.shape == cv2_mask2.shape: cv2_mask = cv2.subtract(cv2_mask1, cv2_mask2) return torch.clamp(torch.from_numpy(cv2_mask) / 255.0, min=0, max=1) else: # do nothing - incompatible mask shape: mostly empty mask return mask1 def add_masks(mask1, mask2): mask1 = mask1.cpu() mask2 = mask2.cpu() cv2_mask1 = np.array(mask1) * 255 cv2_mask2 = np.array(mask2) * 255 if cv2_mask1.shape == cv2_mask2.shape: cv2_mask = cv2.add(cv2_mask1, cv2_mask2) return torch.clamp(torch.from_numpy(cv2_mask) / 255.0, min=0, max=1) else: # do nothing - incompatible mask shape: mostly empty mask return mask1 def normalize_region(limit, startp, size): if startp < 0: new_endp = min(limit, size) new_startp = 0 elif startp + size > limit: new_startp = max(0, limit - size) new_endp = limit else: new_startp = startp new_endp = min(limit, startp+size) return int(new_startp), int(new_endp) def make_crop_region(w, h, bbox, crop_factor, crop_min_size=None): x1 = bbox[0] y1 = bbox[1] x2 = bbox[2] y2 = bbox[3] bbox_w = x2 - x1 bbox_h = y2 - y1 crop_w = bbox_w * crop_factor crop_h = bbox_h * crop_factor if crop_min_size is not None: crop_w = max(crop_min_size, crop_w) crop_h = max(crop_min_size, crop_h) kernel_x = x1 + bbox_w / 2 kernel_y = y1 + bbox_h / 2 new_x1 = int(kernel_x - crop_w / 2) new_y1 = int(kernel_y - crop_h / 2) # make sure position in (w,h) new_x1, new_x2 = normalize_region(w, new_x1, crop_w) new_y1, new_y2 = normalize_region(h, new_y1, crop_h) return [new_x1, new_y1, new_x2, new_y2] def crop_ndarray4(npimg, crop_region): x1 = crop_region[0] y1 = crop_region[1] x2 = crop_region[2] y2 = crop_region[3] cropped = npimg[:, y1:y2, x1:x2, :] return cropped def crop_ndarray2(npimg, crop_region): x1 = crop_region[0] y1 = crop_region[1] x2 = crop_region[2] y2 = crop_region[3] cropped = npimg[y1:y2, x1:x2] return cropped def crop_image(image, crop_region): return crop_ndarray4(np.array(image), crop_region) def to_latent_image(pixels, vae): x = pixels.shape[1] y = pixels.shape[2] if pixels.shape[1] != x or pixels.shape[2] != y: pixels = pixels[:, :x, :y, :] t = vae.encode(pixels[:, :, :, :3]) return {"samples": t} def scale_tensor(w, h, image): image = tensor2pil(image) scaled_image = image.resize((w, h), resample=LANCZOS) return pil2tensor(scaled_image) def scale_tensor_and_to_pil(w, h, image): image = tensor2pil(image) return image.resize((w, h), resample=LANCZOS) def empty_pil_tensor(w=64, h=64): image = Image.new("RGB", (w, h)) draw = ImageDraw.Draw(image) draw.rectangle((0, 0, w-1, h-1), fill=(0, 0, 0)) return pil2tensor(image) class NonListIterable: def __init__(self, data): self.data = data def __getitem__(self, index): return self.data[index] # author: Trung0246 def add_folder_path_and_extensions(folder_name, full_folder_paths, extensions): # Iterate over the list of full folder paths for full_folder_path in full_folder_paths: # Use the provided function to add each model folder path folder_paths.add_model_folder_path(folder_name, full_folder_path) # Now handle the extensions. If the folder name already exists, update the extensions if folder_name in folder_paths.folder_names_and_paths: # Unpack the current paths and extensions current_paths, current_extensions = folder_paths.folder_names_and_paths[folder_name] # Update the extensions set with the new extensions updated_extensions = current_extensions | extensions # Reassign the updated tuple back to the dictionary folder_paths.folder_names_and_paths[folder_name] = (current_paths, updated_extensions) else: # If the folder name was not present, add_model_folder_path would have added it with the last path # Now we just need to update the set of extensions as it would be an empty set # Also ensure that all paths are included (since add_model_folder_path adds only one path at a time) folder_paths.folder_names_and_paths[folder_name] = (full_folder_paths, extensions) # wildcard trick is taken from pythongossss's class AnyType(str): def __ne__(self, __value: object) -> bool: return False any_typ = AnyType("*")