import torch import torch.nn.functional as F import os import subprocess CV2_AVAILABLE = True try: import cv2 except: print("OpenCV is not installed so face cropping is not available.") CV2_AVAILABLE = False CURRENT_DIR = os.path.dirname(os.path.realpath(__file__)) DETECTOR_FILE = "lbpcascade_animeface.xml" if not os.path.exists(os.path.join(CURRENT_DIR, DETECTOR_FILE)): print("Downloading anime face detector...") try: subprocess.run(["wget", "https://raw.githubusercontent.com/nagadomi/lbpcascade_animeface/master/lbpcascade_animeface.xml", "-P", CURRENT_DIR]) except: print(f"Failed to download lbpcascade_animeface.xml so please download it in {CURRENT_DIR}.") CV2_AVAILABLE = False CROP_MODES = ["padding", "face_crop", "none"] if CV2_AVAILABLE else ["padding", "none"] def image_to_numpy(image): image = image.squeeze(0) * 255 return image.numpy().astype("uint8") def numpy_to_image(image): image = torch.tensor(image).float() / 255 return image.unsqueeze(0) def pad_to_square(tensor): tensor = tensor.squeeze(0).permute(2, 0, 1) _, h, w = tensor.shape target_length = max(h, w) pad_l = (target_length - w) // 2 pad_r = (target_length - w) - pad_l pad_t = (target_length - h) // 2 pad_b = (target_length - h) - pad_t padded_tensor = F.pad(tensor, (pad_l, pad_r, pad_t, pad_b), mode="constant", value=0) return padded_tensor.permute(1, 2, 0).unsqueeze(0) def face_crop(image): image = image_to_numpy(image) face_cascade = cv2.CascadeClassifier(os.path.join(CURRENT_DIR, DETECTOR_FILE)) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) w, h = image.shape[1], image.shape[0] target_length = min(w, h) fx, fy, fw, fh = (0, 0, w, h) if len(faces) == 0 else faces[0] dx = target_length - fw // 2 dy = target_length - fh // 2 target_x = 0 if w < h else max(0, fx - dx) target_y = 0 if w > h else max(0, fy - dy) image = image[target_y:target_y+target_length, target_x:target_x+target_length] image = numpy_to_image(image) return image class ImageCrop: @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE", ), "mode": (CROP_MODES, ), } } RETURN_TYPES = ("IMAGE",) FUNCTION = "preprocess" CATEGORY = "image/preprocessors" def preprocess(self, image, mode): if mode == "padding": image = pad_to_square(image) elif mode == "face_crop": image = face_crop(image) return (image,)