Update README.md
Browse files
README.md
CHANGED
|
@@ -3,197 +3,94 @@ library_name: transformers
|
|
| 3 |
tags: []
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 3 |
tags: []
|
| 4 |
---
|
| 5 |
|
| 6 |
+
# FastESM
|
| 7 |
+
FastESM is a Huggingface compatible plug in version of ESM2 rewritten with a newer PyTorch attention implementation.
|
| 8 |
+
|
| 9 |
+
Load any ESM2 models into a FastEsm model to dramatically speed up training and inference without **ANY** cost in performance.
|
| 10 |
+
|
| 11 |
+
Outputting attention maps (or the contact prediction head) is not natively possible with SDPA. You can still pass ```output_attentions``` to have attention calculated manually and returned.
|
| 12 |
+
Various other optimizations also make the base implementation slightly different than the one in transformers.
|
| 13 |
+
|
| 14 |
+
## Use with 🤗 transformers
|
| 15 |
+
|
| 16 |
+
### For working with embeddings
|
| 17 |
+
```python
|
| 18 |
+
import torch
|
| 19 |
+
from transformers import AutoModel, AutoTokenizer
|
| 20 |
+
|
| 21 |
+
model_path = 'Synthyra/ESM2-650M'
|
| 22 |
+
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).eval()
|
| 23 |
+
tokenizer = model.tokenizer
|
| 24 |
+
|
| 25 |
+
sequences = ['MPRTEIN', 'MSEQWENCE']
|
| 26 |
+
tokenized = tokenizer(sequences, padding=True, return_tensors='pt')
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
embeddings = model(**tokenized).last_hidden_state
|
| 29 |
+
|
| 30 |
+
print(embeddings.shape) # (2, 11, 1280)
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
### For working with sequence logits
|
| 34 |
+
```python
|
| 35 |
+
import torch
|
| 36 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
| 37 |
+
|
| 38 |
+
model = AutoModelForMaskedLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).eval()
|
| 39 |
+
with torch.no_grad():
|
| 40 |
+
logits = model(**tokenized).logits
|
| 41 |
+
|
| 42 |
+
print(logits.shape) # (2, 11, 33)
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
### For working with attention maps
|
| 46 |
+
```python
|
| 47 |
+
import torch
|
| 48 |
+
from transformers import AutoModel, AutoTokenizer
|
| 49 |
+
|
| 50 |
+
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).eval()
|
| 51 |
+
with torch.no_grad():
|
| 52 |
+
attentions = model(**tokenized, output_attentions).attentions # tuples of (batch_size, num_heads, seq_len, seq_len)
|
| 53 |
+
|
| 54 |
+
print(attentions[-1].shape) # (2, 20, 11, 11)
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
## Embed entire datasets with no new code
|
| 58 |
+
To embed a list of protein sequences **fast**, just call embed_dataset. Sequences are sorted to reduce padding tokens, so the initial progress bar estimation is usually much longer than the actual time.
|
| 59 |
+
```python
|
| 60 |
+
embeddings = model.embed_dataset(
|
| 61 |
+
sequences=sequences, # list of protein strings
|
| 62 |
+
batch_size=16, # embedding batch size
|
| 63 |
+
max_len=2048, # truncate to max_len
|
| 64 |
+
full_embeddings=True, # return residue-wise embeddings
|
| 65 |
+
full_precision=False, # store as float32
|
| 66 |
+
pooling_type='mean', # use mean pooling if protein-wise embeddings
|
| 67 |
+
num_workers=0, # data loading num workers
|
| 68 |
+
sql=False, # return dictionary of sequences and embeddings
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
_ = model.embed_dataset(
|
| 72 |
+
sequences=sequences, # list of protein strings
|
| 73 |
+
batch_size=16, # embedding batch size
|
| 74 |
+
max_len=2048, # truncate to max_len
|
| 75 |
+
full_embeddings=True, # return residue-wise embeddings
|
| 76 |
+
full_precision=False, # store as float32
|
| 77 |
+
pooling_type='mean', # use mean pooling if protein-wise embeddings
|
| 78 |
+
num_workers=0, # data loading num workers
|
| 79 |
+
sql=True, # store sequences in local SQL database
|
| 80 |
+
sql_db_path='embeddings.db', # path to .db file of choice
|
| 81 |
+
)
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
### Citation
|
| 86 |
+
If you use any of this implementation or work please cite it (as well as the [ESM2](https://www.science.org/doi/10.1126/science.ade2574) paper).
|
| 87 |
+
```
|
| 88 |
+
@misc {FastESM2,
|
| 89 |
+
author = { Hallee, L. and Bichara, D. and Gleghorn, J, P. },
|
| 90 |
+
title = { FastESM2 },
|
| 91 |
+
year = 2024,
|
| 92 |
+
url = { https://huggingface.co/Synthyra/FastESM2_650 },
|
| 93 |
+
doi = { 10.57967/hf/3729 },
|
| 94 |
+
publisher = { Hugging Face }
|
| 95 |
+
}
|
| 96 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|