Upload modeling_fastesm.py with huggingface_hub
Browse files- modeling_fastesm.py +6 -2
modeling_fastesm.py
CHANGED
@@ -903,6 +903,7 @@ class FastEsmModel(FastEsmPreTrainedModel, EmbeddingMixin):
|
|
903 |
output_attentions: Optional[bool] = None,
|
904 |
output_hidden_states: Optional[bool] = None,
|
905 |
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
|
|
906 |
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
907 |
"""Forward pass for base model.
|
908 |
|
@@ -979,6 +980,7 @@ class FastEsmForMaskedLM(FastEsmPreTrainedModel, EmbeddingMixin):
|
|
979 |
output_attentions: Optional[bool] = None,
|
980 |
output_hidden_states: Optional[bool] = None,
|
981 |
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
|
|
982 |
) -> Union[Tuple, EsmMaskedLMOutput]:
|
983 |
outputs = self.esm(
|
984 |
input_ids,
|
@@ -1032,7 +1034,8 @@ class FastEsmForSequenceClassification(FastEsmPreTrainedModel, EmbeddingMixin):
|
|
1032 |
labels: Optional[torch.Tensor] = None,
|
1033 |
output_attentions: Optional[bool] = None,
|
1034 |
output_hidden_states: Optional[bool] = None,
|
1035 |
-
return_dict: Optional[bool] = None
|
|
|
1036 |
) -> Union[Tuple, SequenceClassifierOutput]:
|
1037 |
outputs = self.esm(
|
1038 |
input_ids,
|
@@ -1099,7 +1102,8 @@ class FastEsmForTokenClassification(FastEsmPreTrainedModel, EmbeddingMixin):
|
|
1099 |
labels: Optional[torch.Tensor] = None,
|
1100 |
output_attentions: Optional[bool] = None,
|
1101 |
output_hidden_states: Optional[bool] = None,
|
1102 |
-
return_dict: Optional[bool] = None
|
|
|
1103 |
) -> Union[Tuple, TokenClassifierOutput]:
|
1104 |
outputs = self.esm(
|
1105 |
input_ids,
|
|
|
903 |
output_attentions: Optional[bool] = None,
|
904 |
output_hidden_states: Optional[bool] = None,
|
905 |
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
906 |
+
**kwargs,
|
907 |
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
908 |
"""Forward pass for base model.
|
909 |
|
|
|
980 |
output_attentions: Optional[bool] = None,
|
981 |
output_hidden_states: Optional[bool] = None,
|
982 |
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
983 |
+
**kwargs,
|
984 |
) -> Union[Tuple, EsmMaskedLMOutput]:
|
985 |
outputs = self.esm(
|
986 |
input_ids,
|
|
|
1034 |
labels: Optional[torch.Tensor] = None,
|
1035 |
output_attentions: Optional[bool] = None,
|
1036 |
output_hidden_states: Optional[bool] = None,
|
1037 |
+
return_dict: Optional[bool] = None,
|
1038 |
+
**kwargs,
|
1039 |
) -> Union[Tuple, SequenceClassifierOutput]:
|
1040 |
outputs = self.esm(
|
1041 |
input_ids,
|
|
|
1102 |
labels: Optional[torch.Tensor] = None,
|
1103 |
output_attentions: Optional[bool] = None,
|
1104 |
output_hidden_states: Optional[bool] = None,
|
1105 |
+
return_dict: Optional[bool] = None,
|
1106 |
+
**kwargs,
|
1107 |
) -> Union[Tuple, TokenClassifierOutput]:
|
1108 |
outputs = self.esm(
|
1109 |
input_ids,
|