File size: 3,396 Bytes
cac93e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
library_name: transformers
license: apache-2.0
base_model: unsloth/SmolLM-360M-Instruct
tags:
- axolotl
- generated_from_trainer
datasets:
- argilla/databricks-dolly-15k-curated-en
model-index:
- name: SmolLM-360M-Instruct
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
base_model: unsloth/SmolLM-360M-Instruct
batch_size: 92
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- format: custom
path: argilla/databricks-dolly-15k-curated-en
type:
field_input: original-instruction
field_instruction: original-instruction
field_output: original-response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
device_map: auto
eval_sample_packing: false
eval_steps: 200
flash_attention: true
gradient_checkpointing: true
group_by_length: true
hub_model_id: SystemAdmin123/SmolLM-360M-Instruct
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lr_scheduler: cosine
max_steps: 10000
micro_batch_size: 23
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: /root/.sn56/axolotl/tmp/SmolLM-360M-Instruct
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: true
save_steps: 200
save_total_limit: 1
sequence_len: 2048
tokenizer_type: GPT2TokenizerFast
torch_dtype: bf16
training_args_kwargs:
hub_private_repo: true
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_name: unsloth/SmolLM-360M-Instruct-argilla/databricks-dolly-15k-curated-en
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
```
</details><br>
# SmolLM-360M-Instruct
This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the argilla/databricks-dolly-15k-curated-en dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1591
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 23
- eval_batch_size: 23
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 92
- total_eval_batch_size: 92
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.125 | 1 | 2.9947 |
| 2.0872 | 25.0 | 200 | 2.1591 |
### Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|